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Zusammenfassung

Ein wichtiger Ansatz in der Homotopietheorie (von topologischen Räu-
men, Kettenkomplexen usw.) ist das Studium von Homotopie(ko)limetes
bzw. allgemeiner von Homotopiekanerweiterungen. Diese verallgemeinern
viele homotopietheoretische Konstruktionen und haben nützliche Eigenschaf-
ten, die ähnlich zu denen von klassischen Kanerweiterungen sind. Derivatore
axiomatisieren diesen Kalkül von (Homotopie-)Kanerweiterungen und erlau-
ben uns somit, mit abstrakten Mitteln Homotopietheorie zu betreiben.

Wir betrachten zum Beispiel den Schleifenraum ΩpX,xq eines punktier-
ten topologischen Raumes pX,xq. Dieser kann als das Homotopiepullback
des Diagramms

ˇ

ˇ pX,xq

aufgefasst werden, wobei ˇ ein einpunktiger Raum ist. Außerdem besitzt
ΩpX,xq in der Homotopiekategorie von punktierten Räumen die Struktur
eines Gruppenobjekts, was durch Verkettung und Umkehrung von Schleifen
gegeben ist.

Es gibt in der Tat analoge Konstruktionen für „punktierte Derivatore“.
In dieser Arbeit geht es um diese „Schleifenobjekte“ in Werten von punk-
tierten Derivatoren. Sie beginnt mit einer Zusammenfassung von wichtigen
Definitionen und Resultaten aus der Theorie von Derivatoren. In dem ersten
Abschnitt des Hauptteils wird dann eine Gruppenobjektstruktur für Schlei-
fenobjekte konstruiert. Daraufhin werden im zweiten Abschnitt zweifache
Schleifenobjekte untersucht, die sogar eine abelsche Gruppenobjektstruktur
besitzen. Der Hauptteil endet mit einem kurzen Abschnitt über Anwendun-
gen, in dem Resultate über stabile bzw. verschobene Derivatore bewiesen
werden.

Die Arbeit enthält außerdem zwei Anhänge. Der erste Anhang behandelt
eine alternative Darstellung von Monoidobjekten mit Hilfe von der Segal-
Bedingung, die eine wesentliche Rolle bei der Konstruktion der Gruppenob-
jektstruktur von Schleifenobjekten spielt. In dem zweiten Anhang geht es
um alternative Charakterisierungen von (prä)additiven Kategorien, die in
der Untersuchung von stabilen Derivatoren verwendet werden.
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Introduction

Motivation

One way of studying homotopy theory (of topological spaces, chain com-
plexes etc.) is considering so-called homotopy (co)limits or more generally
homotopy Kan extensions. Besides encompassing many homotopy theoret-
ical constructions, these have very useful formal properties similar to the
properties of classical Kan extensions. The concept of a derivator provides
an abstract framework for homotopy theory by axiomatizing this calculus
of (homotopy) Kan extensions.

For example, consider the loop space ΩpX,xq of a given pointed topo-
logical space pX,xq. This can be thought of as the homotopy pullback of
the diagram

ˇ

ˇ pX,xq

,

where ˇ is a space with only one point. Moreover, note that in the homotopy
category of pointed spaces, ΩpX,xq has a group object structure given by
concatenation and inversion of loops.

There are indeed analogous constructions in the setting of so-called
“pointed derivators”. Furthermore, one can show that these “loop objects”
have a canonical group object structure, which is the main topic of this
thesis.

About This Thesis

The thesis starts with a review of derivators. It is by far not a detailed
introduction to the theory of derivators, but merely a summary of some
results which are needed later.

Having all required concepts at hand, the first section of the main part
deals with a construction which yields a group object structure on loop
objects. Here some generalities on simplicial objects are needed, which are
covered in the first appendix.

From this point on, the technical details about derivators are not very
important. One can, for instance, show that twofold loop objects have an
abelian group object structure by using a formal Eckmann–Hilton argument.
This is done in the second section of the main part.

The main part ends with a short section on applications. The main
application is the additivity of so-called “stable derivators”. For this some
general statements about additive categories are needed, which are dealt
with in the second appendix. Furthermore, it is also mentioned that these
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results can be applied to not only the underlying category of a derivator,
but to all of its values.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.
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0 Preliminaries

Conventions and Notations

When we consider a category, it is mostly implicit that the category in
consideration is locally small, i. e. the homomorphism classes are sets. In
a few situations we will make this explicit in order to emphasize that the
homomorphism classes are indeed sets.

There are two cases, namely Definition 0.6 and Lemma 1.3, where we talk
about “functors” into “categories” which are not necessarily locally small.
This is also emphasized by the usage of capital letters in notations like CAT
and END. In these cases, one must indeed confront some “size issues” which
we do not want to deal with in detail. Our approach is considering these
statements as “metatheoretical” ones and explicitly writing down what they
mean.

Moreover, the diagrams we consider do not necessarily commute unless
explicitly stated.

Now we introduce some concepts and notations which will be used
throughout the thesis.

Notation 0.1. Let ˇ denote the category which has a unique object ˇ with
Endˇpˇq “ idˇ, which is a terminal object in the category Cat of small
categories.

Notation 0.2. Let C be a category and A a small category. Then CA

will denote the category of functors A Ñ C with natural transformations
between such functors as morphisms.

Note that in this case CA is indeed a locally small category since the
class of natural transformations between two functors F,G : A Ñ C can
essentially be seen as a subclass of

ś

aPob A HomCpF paq, Gpaqq which is a
set.

Notation 0.3. Let C be a category which has products and coproducts.
For a family pXiqiPI of objects in C we will denote the structure mor-

phisms of the product by pri :
ś

iPI Xi Ñ Xi. Given a family of morphisms
pfi : Y Ñ XiqiPI in C, we will denote the induced morphism to the product
by

ś

iPI fi : Y Ñ
ś

iPI Xi. If I “ t1, . . . , nu is finite, the product will alter-
natively be denoted by X1 ˆ ¨ ¨ ¨ ˆ Xn and the morphism into the product
which is induced by the family pf1, . . . , fnq by f1 ˆ ¨ ¨ ¨ ˆ fn.

Similarly, we will write ini : Xi Ñ
š

iPI Xi for the structure morphisms
of a coproduct and

š

iPI gi :
š

iPI Xi Ñ Y for the morphism from the co-
product which is induced by the family pgi : Xi Ñ Y qiPI of morphisms. In
the finite case X1 >¨ ¨ ¨>Xn resp. g1 >¨ ¨ ¨>gn will be the alternative notation.

Notation 0.4. If a category C has a terminal object, we will denote it
usually by ˇ. Note that this is compatible with Notation 0.1 for Cat.
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Furthermore, this notation will not cause any ambiguities since it will be
clear from context which category ˇ belongs to.

Given an object X P ob C, πX will denote the unique morphism X Ñ ˇ.

Definition 0.5. If a category C has an object which initial and terminal,
we call C pointed. Such an object is also called a zero object and usually
denoted by 0.

A Review of Derivators

Derivators are a way of axiomatizing (homotopy) Kan extensions and
hence allow us to describe homotopy theories in purely (2-)categorical terms.
Their theory was first developed by Heller (cf. [7]) and Grothendieck (cf. [6]).
Later on, the stable case was studied independently by Franke (cf. [3]).

In this subsection, we will briefly review the parts of this theory which
we will need in the following sections and try to make some of our slogans
into more precise statements. While doing this, we will follow the approach
in [4] and [5], where most of the omitted proofs can be found.

We start with the definition of the underlying data of a derivator.

Definition 0.6. A prederivator D is a strict 2-functor from the category
Cat of small categories to the category CAT of all categories which is
contravariant on functors (and covariant on natural transformations).

This means that D assigns to each small category A a category DpAq, to
each functor u : A Ñ B between small categories a functor Dpuq : DpBq Ñ

DpAq and to each natural transformation ρ : u ñ v between such functors
a natural transformation Dpρq : Dpuq ñ Dpvq such that everything is com-
patible with compositions and identities.

For the rest of this section D will be a prederivator. Furthermore,
throughout the thesis we will use a shorter notation for the value of a functor
under a prederivator.

Notation 0.7. Given a functor u : A Ñ B between small categories, we will
write u˚ for Dpuq : DpBq Ñ DpAq as long as the prederivator in considera-
tion is clear from context.

Here the value DpAq (resp. DpBq) can be thought of as the category of
“coherent diagrams of shape A (resp. B)” and the induced functor
u˚ : DpBq Ñ DpAq as a “restriction functor” (cf. Example 0.14 and Ex-
ample 0.15). Indeed, if one considers Dpˇq as “the underlying category
of D”, one can construct actual diagrams from coherent diagrams in the
following sense.

Remark 0.8. Given a category C, an object C P ob C corresponds to the
functor ˇ Ñ Cwhich sends ˇ to C and idˇ to idC . Under this identification
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a natural transformation between two functors C,D : ˇ Ñ C corresponds
to a morphism Cpˇq Ñ Dpˇq. Furthermore, this assignment induces an
isomorphism of categories between C and Cˇ.

Hence, given a small category A and an object a of A, one can consider
a as a functor a : ˇ Ñ A. This yields a functor a˚ : DpAq Ñ Dpˇq. We
will denote it also by p qa and hence write fa : Xa Ñ Ya for the image of a
morphism f : X Ñ Y in DpAq under a˚.

Moreover, morphisms φ : a Ñ a1 in A correspond to natural transforma-
tions φ : a ñ a1. Hence a morphism in A yields a natural transformation
a˚ ñ pa1q˚ between Functors a˚, pa1q˚ : DpAq Ñ Dpˇq. In fact, to each
X P ob DpAq we can (functorially) assign an object diaApXq of DpˇqA by
setting diaApXqpaq :“ Xa for objects and diaApXqpφq :“ DpφqX : Xa Ñ Xa1

for morphisms. We call diaApXq the underlying diagram of X.

The next step is imitating the description of (homotopy) Kan extensions
as adjoints to restriction functors.

Definition 0.9. Let u : A Ñ B be a functor between small categories.

• We say that D admits left Kan extensions along u if u˚ has a left
adjoint u!. In this case we denote the unit of this adjunction by ηu!,u˚

and the counit by ϵu!,u˚ .

• We say that D admits right Kan extensions along u if u˚ has a right
adjoint u˚. In this case we denote the unit of this adjunction by ηu˚,u˚

and the counit by ϵu˚,u˚
.

In order to make the definition of derivators more understandable, we
will first review the calculus of “mates” which plays a central role in the
theory derivators.

Definition 0.10. Given functors A p
ÝÑ B

u
ÝÑ D and A

v
ÝÑ C

q
ÝÑ D between

small categories and a natural transformation u ˝ p ñ q ˝ v, applying D

yields a diagram
DpAq DpBq

DpCq DpDq

p˚

ðv˚

q˚

u˚

with a natural transformation α : p˚ ˝ u˚ ñ v˚ ˝ q˚.
Assuming that D admits both left and right Kan extensions along all

functors involved, the corresponding adjunction units and counits yield two
diagrams

DpCq DpAq DpBq

DpCq DpDq DpBq

v!

ð

p˚

ð ðv˚

idDpCq

q˚

u˚

u!

idDpBq
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and
DpBq

DpAq DpBq

DpCq DpDq

DpCq

ðp˚

p˚

ð

idDpBq

v˚

q˚

u˚

ð
q˚

idDpCq

.

Hence we obtain natural transformations

α! : v!˝p
˚

pv!˝p˚q ηu!,u˚

ùùùùùùùùùñ v!˝p
˚ ˝u˚ ˝u!

v! α u!
ùùùùñ v!˝v

˚ ˝q˚ ˝u!
ϵv!,v˚ pq˚˝u!q
ùùùùùùùùñ q˚ ˝u!

and

α˚ : u˚˝q˚

ηp˚,p˚
pu˚˝q˚q

ùùùùùùùùùñ p˚˝p˚˝u˚˝q˚
p˚ α q˚
ùùùùùñ p˚˝v˚˝q˚˝q˚

pp˚˝v˚q ϵq˚,q˚
ùùùùùùùùùñ p˚˝v˚

which we call the mate transformations associated to α.

We now summarize some important results about mates.

Remark 0.11. In the situation of the previous definition the following state-
ments hold.

• Consider the “degenerate” case where α is induced by a commutative
square

A A

C C,

idA

v v“

idC

i. e. the natural transformation idv : v ñ v. Then α “ idv˚ by the
2-functoriality of D and α! “ idv! : v! ñ v! by the triangular identity
for the left adjoint functor v!.

• Similarly, if A “ C, B “ D, v “ idA, u “ idB, p “ q and the given
natural transformation p ñ p is idp, then α˚ “ idp˚ .

• Consider a “horizontally adjacent square” as in

A B E

C D F

p

v

r

uð tð

q s

,
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where we call the natural transformation induced by the new square
β : r˚ ˝ t˚ ñ u˚ ˝ s˚. Then we obtain a horizontal pasting

γ : p˚ ˝ r˚ ˝ t˚
p˚ β
ùùùñ p˚ ˝ u˚ ˝ s˚ α s˚

ùùùñ v˚ ˝ q˚ ˝ s˚.

Furthermore, γ! coincides with the horizontal pasting of α! and β!.

• Similarly, given a “vertically adjacent square” as in

A B

C D

E F

p

v uð

q

w tð
r

,

we obtain a vertical pasting p˚˝u˚˝t˚ ñ v˚˝w˚˝r˚ which is compatible
with p q˚.

• α! is an isomorphism if and only if α˚ is an isomorphism.

We need one more concept before we can give a definition of derivators.

Definition 0.12. Let u : A Ñ B be a functor between small categories and
b P obB.

Then we obtain two slice categories pu{bq and pb{uq given by

obppu{bqq “ tpa, fq | a P obA, f : upaq Ñ bu

and

Hompu{bq

`

pa, fq, pa1, f 1q
˘

“
␣

g P HomA

`

a, a1
˘

| f “ f 1 ˝ upgq
(

respectively

obppb{uqq “ tpa, fq | a P obA, f : b Ñ upaqu

and

Hompb{uq

`

pa, fq, pa1, f 1q
˘

“
␣

g P HomA

`

a, a1
˘

| f 1 “ upgq ˝ f
(

.

There is a functor p : pu{bq Ñ A which is given by pppa, fqq “ a on objects
and ppgq “ g on morphisms. Similarly, there is a functor q : pb{uq Ñ A given
by qppa, fqq “ a on objects and qpgq “ g on morphisms.

Furthermore, there is a natural transformation ϕu,b from u ˝ p to the
constant functor b ˝ πpu{bq that is given by f : uppppa, fqqq “ upaq Ñ b
for each pa, fq P obppu{bqq. Similarly, there is a natural transformation
ψu,b : b ˝ πpb{uq ñ u ˝ q which is given by f : b Ñ upaq “ upqppa, fqqq for
pa, fq P obppu{bqq.
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Now we have everything at hand to define derivators.

Definition 0.13. A prederivator D is called a derivator if the following
conditions are satisfied:

(Der1) D takes coproducts to products, i. e. for a family pAiqiPI of small
categories the functor

D

˜

ž

iPI

Ai

¸

ś

iPI in˚
i

ÝÝÝÝÝÑ
ź

iPI

DpAiq

is an equivalence of categories.

(Der2) For A P ob Cat, a morphism f : X Ñ Y in DpAq is an isomorphism
iff for each a P obA, fa : Xa Ñ Ya is an isomorphism in Dpˇq.

(Der3) For a functor u : A Ñ B between small categories, D has both left
and right Kan extensions along u.

(Der4) For a functor u : A Ñ B between small categories and an object
b P B, the mate transformation

pΦu,bq! : pπu{bq! ˝ p˚ ñ b˚ ˝ u!

induced by ϕu,b and the mate transformation

pΨu,bq˚ : b˚ ˝ u˚ ñ pπpb{uqq˚ ˝ q˚

induced by ψu,b are isomorphisms.

Note that the axioms (Der1)-(Der4) do not add any new data to a pred-
erivator D, but they merely require D to have certain properties. Even
(Der3) essentially does not require any choices to be made since adjoint
functors are unique up to isomorphism if they exist.

Before we proceed with some useful properties of derivators, we want to
consider some examples which are the main motivation for studying deriva-
tors. We start with a classical one which is essentially discussed in [9, Chap-
ter X] without the terminology of derivators.

Example 0.14. To each category Cwe can assign its represented prederiva-
tor yC which is given by

• yCpAq “ CA on small categories A P ob Cat,

• u˚ “ ˝u : CB Ñ CA on functors u : A Ñ B between small categories

• pyCpαqqF “ Fα : F ˝u ñ F ˝v for F P CB on natural transformations
α : u ñ v between such functors.

14



Note that represented prederivators always satisfy (Der1) and (Der2).
Now assume that C is complete and cocomplete. Then, for a functor

u : A Ñ B, u˚ : CB Ñ CA has indeed both a left adjoint and a right adjoint,
which are given by classical Kan extensions along u. This means that (Der3)
holds. Furthermore, there are “formulas” for computing these classical Kan
extensions pointwise in terms of colimits and limits which correspond to the
axiom (Der4).

Another example which is more general and more closely related to ho-
motopy theory is given by model categories. The statement in its full gen-
erality is due to Cisinski (cf. [1]).

Example 0.15. Let M be a model category. Given a small category A,
we denote by WA the class of morphisms in MA which are pointwise weak
equivalences.

Then one can construct a derivator HoM, called the homotopy derivator
of M, which is given by localizations MArW´1

A s (which can be realized as
locally small categories) on objects A P ob Cat and restriction functors
induced by ˝ u : MB Ñ MA on functors u : A Ñ B.

In particular, one has homotopy derivators associated with chain com-
plexes of modules over a ring, (pointed) topological spaces, (pointed) sim-
plicial sets and spectra.

Let D be a derivator for the rest of this section. Then (Der1) and (Der3)
yield the following statement.

Remark 0.16. As the diagonal functor ∆: Dpˇq Ñ DpˇqI » DpIq has a
left adjoint and a right adjoint for any index set I, coproducts and products
exist in Dpˇq.

In particular, Dpˇq has an initial object H and a terminal object ˇ

(which is not to be confused with the terminal category ˇ).

There are certain types of functors u : A Ñ B for which Kan extensions
along u are particularly easy to understand.

Definition 0.17. Let u : A Ñ B be a fully faithful functor between small
categories.

• u is called a cosieve if for every morphism upaq Ñ b in B it follows
that b P essim u.

• u is called a sieve if for every morphism b Ñ upaq in B it follows that
b P essim u.

Indeed, some calculations yield the following very useful statement.
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Remark 0.18. If u : A Ñ B is a cosieve, then X P obpDpBqq is in the
essential image of u! if and only if Xb – H for all b P pobBqzupobAq.

Similarly, if u : A Ñ B is a sieve, then X P obpDpBqq is in the essential
image of u˚ if and only if Xb – ˇ for all b P pobBqzupobAq.

There is one more relevant case in which Kan extensions can be computed
easily.
Remark 0.19. Let A be a small category.

• If A has a terminal object 8, then we have pπAq!pXq – X8 for all
X P obpDpAqq.

• If A has an initial object o, then we have pπAq˚pXq – Xo for all
X P obpDpAqq.

We end this section with definitions of a few concepts which play an
important role in the theory of derivators.
Definition 0.20. A square

A B

C D

p

v uð

q

in Cat is called homotopy exact, if for any derivator E, the mate transfor-
mations associated with

EpAq EpBq

EpCq EpDq

p˚

α
ðv˚

q˚

u˚

are isomorphisms.
Note that in the situation of the previous definition, α! is an isomorphism

if and only if α˚ is an isomorphism. In particular, (Der4) means that all
“slice squares” of the form

pu{bq A

ˇ B

p

πpu{bq uð

b

and
pb{uq A

ˇ B

q

πpb{uq uñ

b

are homotopy exact.
The last definition of this section brings us closer to the title of this

thesis.
Definition 0.21. D is called pointed if Dpˇq has a zero object 0.

An important class of examples for pointed derivators is given by homo-
topy derivators of pointed model categories.
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1 Loop Objects
The aim of this section is showing that loop objects in the underlying

category of a pointed derivator have a group object structure. This is done
by constructing a special simplicial object whose first level coincides with
the loop object and then showing that there is an inversion morphism for
the induced multiplication (cf. Definition A.5 and Proposition A.6).

Let D be a pointed derivator throughout this section.

Simplicial Objects which Induce Loop Objects

The crucial point of our discussion of the loop objects is the fact that
they are induced by certain families of objects which have a richer structure
than that of a simplicial object.

In order to define these objects, we need a few new notations.

Notation 1.1. • Let Fin denote the category of finite sets (or equiva-
lently the category of finite discrete categories). Let xny :“ t0, . . . , nu P

ob Fin for n P N.

• Let p q▷ : Fin Ñ Cat be the cocone functor, i. e. the functor which
adds a terminal object 8 to a given category. Let n :“ xny

▷.

Now we can define the structures which induce the loop objects.

Definition 1.2. For a P ob Fin let ωa be the composition

ωa : Dpˇq
8!
ÝÑ Dpa▷q

pπa▷ q˚
ÝÝÝÝÑ Dpˇq.

For n P N we will abuse notation and write ωn for ωxny. In particular,
for the loop functor defined in [5, Definition 8.17] we have

Ω – ω1 : Dpˇq
8!
ÝÑ Dp 1q

pπ
1

q˚

ÝÝÝÝÝÑ Dpˇq.

Before we investigate these objects further, let us have a look at how ωn

for small n behaves on the level of underlying diagrams. First we note that
8! : Dpˇq Ñ Dpxny

▷
q simply “adds zeros” since 8 : ˇ Ñ n is a cosieve

(cf. Remark 0.18). In particular, for ω0 we have

X
8!⇝ 0 Ñ X

π˚⇝ 0 .

For higher degrees we can add some intermediate steps to have a better
understanding and thus obtain

X
8!⇝

0

0 X

p‚q˚⇝
ΩX 0

0 X

π˚⇝ ΩX

17



respectively

X
8!⇝

0 0

0 X

p‚q˚⇝

ΩX

ΩX 0 0

0 X

p‚q˚⇝

ΩX ˆ ΩX ΩX

ΩX 0 0

0 X

π˚⇝ ΩX ˆ ΩX .

We will make these pictures into precise statements in the following
pages. In particular, we will generalize the fact that ω2X is isomorphic to
ω1Xˆω1X and show that the Segal condition holds for pωnXqnPN. However,
before we can talk about the Segal condition, we have to first show that our
construction is functorial in n.

Lemma 1.3. The assignment a ÞÑ ωa can be made into a functor

ω : Finop Ñ ENDCATpDpˇqq,

i. e. for each a P ob Fin, ωa is an endofunctor of Dpˇq and we can assign to
each map f : a Ñ b between finite sets a natural transformation ωf : ωb ñ ωa

s. t. this assignment is compatible with compositions and identities.

Proof. For a P ob Fin, ωa is an endofunctor of Dpˇq by construction.
For functoriality, we consider a, b P ob Fin and f : a Ñ b. Then we have

two diagrams

ˇ ˇ

a▷ b▷

ˇ ˇ

8 8“
f▷

“

⇝

Dpˇq Dpˇq

Dpa▷q Dpb▷q

Dpˇq Dpˇq

8! ñ 8!

pπa▷ q˚

pf▷q˚

pπb▷ q˚
ð

, (1)

where the second one is obtained from the first by applying D and then
using the appropriate mates.

Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation ωf : ωb ñ ωa

as the pasting of the two squares on the right.
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Note that we can detect such isomorphisms pointwise. In order to do
that, we consider an x P obpa▷q, which yields a diagram

p8{xq ˇ ˇ

ˇ a▷ b▷

π

π 8ð 8“

x f▷

.

Then we know that the mate transformation π!π
˚ ñ x˚8! is an iso-

morphism since the square on the left is a slice square and hence homotopy
exact. Furthermore, we have

p8{xq –

#

H x ‰ 8

ˇ x “ 8
.

Since f▷pxq “ 8 iff x “ 8, this yields that the pasting of the two squares
is also a slice square, hence homotopy exact, which means that the mate
transformation π!π

˚ ñ pf▷pxqq˚8! is an isomorphism. Hence, in total, we
obtain that the mate transformation x˚8! ñ pf▷pxqq˚8! is an isomorphism.

We can now define ωf : ωb ñ ωa to be the pasting of the inverse of 8! ñ

pf▷q˚8! with pπb▷q˚ ñ pπa▷q˚pf▷q˚. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identities since all the natural transformations in
(1) are identities if f is an identity map. (See Remark 0.11 for an elaboration
of these facts.)

We will obtain a simplicial object from ωp q by considering the simplex
category as a subcategory of Fin in the following sense.

Remark 1.4. Let ∆ be the simplex category (cf. Notation A.1). Then we
have a functor ι : ∆ Ñ Fin given by ιprnsq “ xny on objects and ιpfq “ f
(as a map between sets) on morphisms. Note that ι is injective on objects
and faithful.

Corollary 1.5. Let X P obpDpˇqq. Then pωnXqnPN together with the mor-
phisms given by pωιpfqqX for f P mor ∆ is a simplicial object in Dpˇq.

Loop Objects as Monoid Objects

Our next step is showing that the simplicial objects associated with loop
objects are special (cf. Definition A.5), i. e. are trivial in the zeroth level and
satisfy the Segal condition. This will directly imply that loop objects have
a monoid object structure.

Remark 1.6. For X P obpDpˇqq we have ω0X – pπ 0q˚8!X – p8!Xq0
since 0 is the initial object of 0 (cf. Remark 0.19). Hence we obtain
ω0X – p8!Xq0 – 0 since 8 : ˇ Ñ x0y is a cosieve and 0 R 8pob ˇq (cf.
Remark 0.18).
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This means a posteriori that the unique morphism ω0X Ñ 0 is an iso-
morphism since the unique morphism between two zero objects is always an
isomorphism.

Now we want to deal with higher levels.

Proposition 1.7. Let n ą 1. We define in : xn´ 1y Ñ xny to be the inclu-
sion and i1n : x1y Ñ xny to be the function with i1np0q “ n´1 resp. i1np1q “ n.

Then the natural transformation αn : ωn ñ ωn´1 ˆ ω1 induced by the
functor kn :“ i▷n > i1n

▷ : n´1 > 1 Ñ n is an isomorphism.

Proof. Let Jn be the category which is obtained from n by adding two
objects w0, w1 with morphisms w0 Ñ k for 0 ď k ď n ´ 1 resp. w1 Ñ k for
n ´ 1 ď k ď n and resulting compositions such that all compositions to 8

are equal. Let jn : n Ñ Jn denote its inclusion functor.
Let be the full subcategory of Jn containing w0, w1 and n´ 1 (which

is isomorphic to 1), and let ln denote its inclusion functor. Since n ´ 1 is
terminal in , we will denote it also by 8. Note that ln has a right adjoint
rn given by

rnpxq “

$

’

&

’

%

w0 x P tw0, 0, . . . , n´ 2u

w1 x P tw1, nu

n´ 1 x P tn´ 1,8u

.

for x P ob Jn, which defines the images of morphisms uniquely. Hence we
have l˚n – prnq˚.

Then, using the natural equivalence DpA>Bq » DpAqˆDpBq for A,B P

ob Cat and appropriate mates, we obtain a diagram

Dpˇq Dpˇ > ˇq

Dp nq Dp n´1 > 1q

DpJnq Dpˇ > ˇq Dpˇq

Dp q Dp q Dpˇq

pid>idq˚

p8nq! p8n´1>81q!ð
k˚

n

pjnq˚ pπn´1>π1q˚

pw0>w1q˚

l˚
n–prnq˚

ñ
pπˇ>ˇq˚

pw0>w1q˚ id˚

id˚

ñ
pπ1q˚

–

.

Under the equivalences mentioned above the upper natural transforma-
tion is given by

p8n´1q! ˆ p81q! ñ

´

pi▷n q˚ ˆ pi1n
▷

q˚
¯

p8nq!,

which is the product of the natural transformations which occur in the
definition of ωin resp. ωi1

n
(cf. (1) in the proof of Lemma 1.3). Hence
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it is an isomorphism as product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
π1pw0 > w1q “ πˇ>ˇ.

All in all, the diagram above yields a natural transformation from

pπ1q˚prnq˚pjnq˚p8nq! – pπnq˚p8nq! – ωn

to

pπˇ>ˇq˚pπn´1>π1q˚p8n´1>81q! – ppπn´1q˚p8n´1q!qˆppπ1q˚p81q!q – ωn´1ˆω1

which is the αn mentioned in the statement of this proposition. We now
want to show that (certain restrictions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that αn is an
isomorphism.

For the middle square we consider diagrams of the form

px{pπn´1 > π1qq n´1 > 1 n

ˇ ˇ > ˇ Jn

px,πn´1>π1

πpx{pπn´1>π1qq

kn

πn´1>π1 jn

x

ñ

w0>w1

ñ

for x P obpˇ > ˇq “ tˇ0, ˇ1u.
Then we have

pˇ0{pπn´1 > π1qq – n´1 and pˇ1{pπn´1 > π1qq – 1

where under this identification pˇ0,πn´1>π1 resp. pˇ1,πn´1>π1 is given by the
inclusion ι0 resp. ι1 of the corresponding category. Since the left square is a
slice square, this means that

ˇ˚
0pπn´1 > π1q˚ ñ pπpˇ0{pπn´1>π1qqq˚ppˇ0,πn´1>π1q˚ – pπn´1q˚ι

˚
0

and
ˇ˚

1pπn´1 > π1q˚ ñ pπpˇ1{pπn´1>π1qqq˚ppˇ1,πn´1>π1q˚ – pπ1q˚ι
˚
1

are isomorphisms.
On the other hand, we also have

pw0{jnq – n´1 and pw1{jnq – 1,

where under this identification pw0,jn is given by i▷n “ knι0 and pw1,jn is
given by i1n

▷
“ knι1. Hence the pasting of the above squares is (up to

isomorphisms) also a slice square, so the natural transformations

ppw0 > w1qˇ0q˚pjnq˚ “ w˚
0 pjnq˚ ñ pπpw0{jnqq˚ppw0,jnq˚ – pπn´1q˚pi▷n q˚
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and

ppw0 > w1qˇ1q˚pjnq˚ “ w˚
1 pjnq˚ ñ pπpw1{jnqq˚ppw1,jnq˚ – pπ1q˚pi▷n q˚

are also isomorphisms.
Combining these isomorphisms, we see that

ˇ˚
0pπn´1 > π1q˚k

˚
n – pπn´1q˚ι

˚
0k

˚
n

– pπn´1q˚pi▷n q˚ – w˚
0 pjnq˚

– ppw0 > w1qˇ0q˚pjnq˚ – ˇ˚
0pw0 > w1q˚pjnq˚

and

ˇ˚
1pπn´1 > π1q˚k

˚
n – pπn´1q˚ι

˚
1k

˚
n

– pπn´1q˚pi1n
▷

q˚ – w˚
1 pjnq˚

– ppw0 > w1qˇ1q˚pjnq˚ – ˇ˚
1pw0 > w1q˚pjnq˚.

Since mates are compatible with pastings this means that the natural
transformation x˚pw0 > w1q˚pjnq˚ ñ x˚pπn´1 > π1q˚k

˚
n is an isomorphism

for all x P obpˇ > ˇq, hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation

l˚n – prnq˚ ñ pw0 > w1q˚pw0 > w1q˚

in the first square of the last row is not an isomorphism for allX P obpDpJnqq.
We are going to “fix” this by restricting our attention to essimppjnq˚p8nq!q.

First, we compute pn´1q˚pjnq˚X
1 for X 1 P essimp8!q: Consider the slice

square
pn´ 1{jnq n

ˇ Jn

p

π jn

n´1

ñ
.

Then we know that pn´ 1q˚pjnq˚ ñ π˚p
˚ is an isomorphism.

Now pn´ 1{jnq is isomorphic to the full subcategory Kn of n spanned
by n ´ 1 and 8, where p corresponds to the inclusion Kn Ñ n under this
identification. Hence we see that π˚p

˚ – pn ´ 1q˚p˚ – pppn ´ 1qq˚ since
n ´ 1 is the initial object of Kn. Now note that ppn ´ 1q is the inclusion
of n ´ 1 into n. Therefore pn ´ 1q˚pjnq˚ – pn ´ 1q˚, where the former
n ´ 1 is the object in Jn and the latter the one in n. Since 8 : ˇ Ñ n

is a cosieve we know that pn ´ 1q˚X 1 – 0 for X 1 P essimp8!q, so we obtain
pn´ 1q˚pjnq˚X

1 – 0.
This means that forX P essimppjnq˚p8nq!q we have 8˚l˚nX – pln8q˚X –

pn ´ 1q˚X – 0. On the other hand, for any Y P Dpˇ > ˇq, we have
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8˚pw0 > w1q˚Y – 0 since w0 > w1 is a sieve. Hence l˚n – prnq˚ and
pw0 > w1q˚pw0 > w1q˚ agree on 8 “ n´ 1 for X P essimppjnq˚p8nq!q.

We now consider wi for i P t0, 1u. In the slice square

pwi{w0 > w1q ˇ > ˇ

ˇ

p

π w0>w1

wi

ñ
,

pwi{w0 > w1q can be identified with ˇ and p with ˇi : ˇ Ñ ˇ > ˇ. On the
other hand, in the slice square

pwi{rnq Jn

ˇ

p1

π rn

wi

ñ
,

pwi{rnq can be identified with the subcategory Wi of Jn spanned by objects
under wi, i. e. objects x s. t. there exists a morphism f : wi Ñ x. Under this
identification p1 becomes the inclusion of Wi.

Hence we obtain a cube

DpWiq DpJnq

Dpˇq Dpˇ > ˇq

Dpˇq Dp q

Dpˇq Dp q

π˚

w˚
i

pp1q˚

pw0>w1q˚

prnq˚

π˚

pw0>w1q˚

ˇ˚
i

id˚

w˚
i

id˚

w˚
i

,

where the faces are filled with the natural transformations considered above.
Now upper and lower faces commute by the functoriality of D. Hence

the pasting of the back face with the left face coincides with the pasting of
the right face with the front face since both are induced by the equality of
rnp

1wi “ rnpw0 > w1qˇi to wi.
The left face commutes up to isomorphism since wi is the initial object

of Wi and hence pπWiq˚ – w˚
i holds. Moreover, the front face and the back

face are induced by slice squares, so they are also filled with isomorphisms.
Hence the pasting of prnq˚ ñ pw0 >w1q˚pw0 >w1q˚ with w˚

i pw0 >w1q˚ ñ π˚ˇ˚
i

is an isomorphism. Inverting w˚
i pw0 > w1q˚ ñ π˚ˇ˚

i , we see that w˚
i prnq˚ ñ

w˚
i pw0 > w1q˚pw0 > w1q˚ is an isomorphism.
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All in all, for X P essimppjnq˚p8nq!q, prnq˚ ñ pw0 >w1q˚pw0 >w1q˚ is an
isomorphism pointwise, so it is indeed an isomorphism. This means that the
last remaining natural transformation is also an isomorphism in the relevant
case, so αn : ωn ñ ωn´1 ˆ w1 is an isomorphism in total.

Thus we obtain a monoid object structure on ω1X – ΩX for X P

obpDpˇqq as follows:

Corollary 1.8. Let µ : x1y Ñ x2y be the map with µp0q “ 0 resp. µp1q “ 2
and let ε be the unique map from x1y to x0y.

Then for any X P obpDpˇqq, ω1X – ΩX has a monoid object structure
given by the multiplication

mX : ω1X ˆ ω1X
pα´1

2 qX
ÝÝÝÝÝÑ ω2X

pωµqX
ÝÝÝÝÑ ω1X

and the unit
0: 0 –

ÝÑ ω0X
pωεqX
ÝÝÝÝÑ ω1X.

Proof. The previous proposition and the preceding remark imply that the
Segal morphism

ωnX Ñ pω1Xqn

is an isomorphism for any n P N. Then we have ω0X – 0 and the simplicial
object induced by ωp qX : Finop Ñ Dpˇq satisfies the Segal condition, so it
is a special simplicial object. Therefore ω1X “ ΩX has a natural monoid
object structure (cf. Proposition A.6).

Now note that rns P ob ∆ and ιprnsq “ xny P ob Fin are equal as sets
for all n P N. Furthermore, we have i2 “ ϕ0, i12 “ ϕ1, µ “ δ1 and ε “ σ0 as
maps between sets (cf. Notation A.1). Hence the monoid object structure
on ω1X which is induced by the special simplicial object corresponding to
ωp qX is indeed given by the morphisms mX and 0.

Loop Objects as Group Objects

The last step in this section is the construction of inverses for the mul-
tiplication of loop objects, concluding that loop objects have a group object
structure. The crucial point here is the additional structure Fin carries in
comparison to ∆.

Proposition 1.9. Let σ : x1y Ñ x1y be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X P obpDpˇqq, the morphism given by pωσqX : ω1X Ñ

ω1X is an inversion morphism for the multiplication mX of ΩX – ω1X.

Proof. We have to show that the composition z :“ mX ˝ pidX ˆ pwσqXq

factors through ω0X – 0, i. e. is the zero morphism. In order to do this we
will describe z as a morphism which factors through ω2X.
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Let ϕ : x2y Ñ x1y be the map with ϕp0q “ 0 “ ϕp2q and ϕp1q “ 1. We
claim that the diagram

ω2X

ω1X ω1X ˆ ω1X ω1X

pα2qX “ωi2 ˆωi1
2

pωµqXpωϕqX

idˆpωσqX
mX

commutes.
The right triangle commutes by the definition of mX . We verify the

commutativity of the left triangle componentwise. Indeed, we have

pr1 ˝ pωi2 ˆ ωi1
2
q ˝ pωϕqX “ ωi2 ˝ pωϕqX “ pωϕ˝i2qX “ pωidx1y

qX

“ idω1X “ pr1 ˝ pidω1X ˆ pωσqXq

and

pr2 ˝ pωi2 ˆ ωi1
2
q ˝ pωϕqX “ ωi1

2
˝ pωϕqX “ pωϕ˝i1

2
qX “ pωσqX

“ pr2 ˝ pidω1X ˆ pωσqXq

since ϕ ˝ i2 “ idx1y and ϕ ˝ i12 “ σ.
Hence we obtain that

z “ mX ˝ pidX ˆ pwσqXq

“ pωµqX ˝ pα´1
2 qX ˝ pα2qX ˝ pωϕqX

“ pωµqX ˝ pωϕqX “ pωϕ˝µqX .

Now note that ϕ ˝ µ factors through x0y as ϕpµp0qq “ ϕp0q “ 0 “ ϕp2q “

ϕpµp0qq. Hence z “ pωϕ˝µqX factors through ω0X – 0.
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2 Double Loop Objects
The considerations of the previous section yield a group object structure

on a twofold loop object Ω2X because it is the loop object of the object
ΩX in Dpˇq. In this section, we will show that this group object structure
is abelian. In order to do that, we will first define a “new” group object
structure on Ω2X. Then, using a formal Eckmann–Hilton argument (cf.
[2]), we will prove that these two structures coincide and are abelian.

In this section D will again be a pointed derivator.

Loop Functor as a Functor to Group Objects

An important result which we need is the fact that the loop functor
factors through the category Dpˇq-Grp of group objects in Dpˇq also on
the level of morphisms.

Lemma 2.1. Let f : X Ñ Y be a morphism in Dpˇq.
Then the induced morphism Ωf : ΩX Ñ ΩY is a homomorphism of group

objects in Dpˇq, where ΩX and ΩY are endowed with the group object struc-
ture discussed in the previous section.

Proof. First we note that the functors ωp qX,ωp qY : Finop Ñ Dpˇq induce
special simplicial objects as discussed in the previous section. Furthermore,
a morphism f : X Ñ Y induces morphisms ωaf : ωaX Ñ ωaY for a P ob Fin.
This assignment is natural in a since for a given u : a Ñ b, the diagram

ωaX ωaY

ωbX ωbY

ωaf

pωuqX

ωbf

pωuqY

commutes since ωu is a natural transformation by Lemma 1.3.
Hence ωp qf : ωp qX ñ ωp qY induces a morphism of monoid objects

ΩX “ ω1X
ω1f“Ωf
ÝÝÝÝÝÑ ω1Y “ ΩY

as a natural transformation between special simplicial objects (cf. Proposi-
tion A.8). Now any morphism of monoid objects between group objects is
already a morphism of group objects. (This can be, for example, checked
on represented functors and hence can be reduced to the fact that a monoid
homomorphism between groups is already a group homomorphism.)

Products under the Loop Functor

Now we will prove another result that brings us closer to the Eckmann–
Hilton argument, namely show that Ω preserves products.
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Remark 2.2. Note that the functor Ω: Dpˇq Ñ Dpˇq has a left adjoint
Σ: Dpˇq Ñ Dpˇq (cf. [5, Proposition 8.18]).

Hence Ω preserves limits. In particular, the natural morphism

Ω

˜

ź

iPI

Xi

¸

ś

iPI Ωppriq
ÝÝÝÝÝÝÝÑ

ź

iPI

ΩXi

is an isomorphism for any index set I and any family pXiqiPI of objects in
Dpˇq.

This immediately implies that also the group object structure on loop
objects are compatible with products.

Remark 2.3. For X,Y P ob Dpˇq, the isomorphism

ΩpX ˆ Y q
Ωppr1qˆΩppr2q
ÝÝÝÝÝÝÝÝÝÑ ΩX ˆ ΩY

is also a homomorphism of group objects since it is the product of two group
object homomorphisms. Hence it is already an isomorphism of group objects
since commutativity of compatibility diagrams for Ωppr1q ˆ Ωppr2q implies
the commutativity of compatibility diagrams for its inverse.

This endows ΩpX ˆ Y q with the structure of a product of ΩX and ΩY
as group objects s. t.

multΩXˆΩY “ppΩppr1q ˆ Ωppr2qq ˆ pΩppr1q ˆ Ωppr2qqq ˝mΩpXˆY q

˝ pppΩppr1q ˆ Ωppr2qq´1 ˆ pΩppr1q ˆ Ωppr2qq´1q,

where multΩXˆΩY : pΩX ˆ ΩY q ˆ pΩX ˆ ΩY q Ñ ΩX ˆ ΩY is the multipli-
cation morphism of the product group object.

Furthermore, the compatibility of Ω with products yields a “new” group
object structure on double loop objects.

Corollary 2.4. For X P obpDpˇqq, Ω2pXq has (in addition to the one
given by being the loop object of ΩpXq) a group object structure given by the
multiplication

m1
X : Ω2pXqˆΩ2pXq

pΩppr1qˆΩppr2qq´1
ÝÝÝÝÝÝÝÝÝÝÝÝÑ ΩpΩXˆΩXq

ΩpmX q
ÝÝÝÝÑ ΩpΩpXqq “ Ω2X,

the unit
0 Ñ Ω2X

and inverses
Ω2X

ΩppωσqX q
ÝÝÝÝÝÝÑ Ω2X.

Proof. The commutativity of the required diagrams follow from the fact that
the corresponding diagrams commute before applying Ω.
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The Eckmann–Hilton Argument

We now have everything at hand to imitate the standard proof of the
fact that a group object in Grp is an abelian group in order to show the
main result of this section.

Lemma 2.5. Let X P ob Dpˇq. Let s2,3 :“ pr1 ˆpr3 ˆpr2 ˆpr4 : pΩ2Xq4 Ñ

pΩ2Xq4 be the morphism which “swaps the second and the third factor”.
Then the diagram

Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X

Ω2X ˆ Ω2X Ω2X ˆ Ω2X

Ω2X

s2,3

m1
X ˆm1

X mΩX ˆmΩX

mΩX m1
X

is commutative.

Proof. We first note that the diagram

ΩpΩX ˆ ΩXq ˆ ΩpΩX ˆ ΩXq

ΩpΩXq ˆ ΩpΩXq ΩpΩX ˆ ΩXq

ΩpΩXqq

ΩpmX qˆΩpmX q mΩXˆΩX

mΩX ΩpmX q

(2)
commutes since ΩpmXq : ΩpΩX ˆ ΩXq Ñ ΩpΩpXqq is a homomorphism of
group objects by Lemma 2.1.

Now pmΩX ˆmΩXq ˝ s2,3 is the multiplication morphism of Ω2X ˆ Ω2X.
By Remark 2.3 this morphism also coincides with mΩXˆΩX up to “conju-
gation” with pΩppr1q ˆ Ωppr2qq ˆ pΩppr1q ˆ Ωppr2qq.

Hence, identifying ΩpΩX ˆ ΩXq with Ω2X ˆ Ω2X via Ωppr1q ˆ Ωppr2q,
the diagram (2) becomes a commutative diagram

Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X

ΩpΩX ˆ ΩXq ˆ ΩpΩX ˆ ΩXq Ω2X ˆ Ω2X

ΩpΩXq ˆ ΩpΩXq ΩpΩX ˆ ΩXq

ΩpΩXqq

pmΩX ˆmΩX q˝s2,3m1
X ˆm1

X –

ΩpmX qˆΩpmX q mΩXˆΩXm1
X

mΩX

–

ΩpmX q

,
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which contains the required diagram as its front square.

Corollary 2.6. The “group laws” mΩX and m1
X on Ω2X coincide and are

abelian.
In particular, Ω2 : Dpˇq Ñ Dpˇq factors through the category Dpˇq-Ab

of abelian group objects in Dpˇq.

Proof. Consider the morphism

f :“ pr1 ˆ 0 ˆ 0 ˆ pr2 : Ω2X ˆ Ω2X Ñ Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X.

Then we have pr1 ˝ pmΩX
ˆmΩXq ˝ s2,3 ˝ f “ mΩX

˝ ppr1 ˆ 0q “ pr1 and
pr2 ˝ pmΩX

ˆmΩXq ˝ s2,3 ˝ f “ mΩX
˝ ppr2 ˆ 0q “ pr1 since 0 Ñ Ω2X is the

unit morphism for mΩX
. Hence we have pmΩX

ˆmΩXq˝s2,3˝f “ idΩ2XˆΩ2X

as these morphisms agree after composing with each of the projections.
Furthermore, we also have pr1 ˝ pm1

X ˆm1
Xq ˝ f “ m1

X ˝ ppr1 ˆ 0q “ pr1
and pr2 ˝ pm1

X ˆm1
Xq ˝ f “ m1

X ˝ ppr2 ˆ 0q “ pr1 since 0 Ñ Ω2X is also the
unit morphism for m1

X . Hence pm1
X ˆm1

Xq ˝ f “ idΩ2XˆΩ2X as these agree
after composing with each of the projections.

In total, using the Eckmann–Hilton identity from the previous lemma,
we obtain

mΩX “ mΩX ˝ idΩ2XˆΩ2X

“ mΩX ˝ pm1
X ˆm1

Xq ˝ f

“ m1
X ˝ pmΩX

ˆmΩXq ˝ s2,3 ˝ f

“ m1
X ˝ idΩ2XˆΩ2X “ m1

X .

For the commutativity of mΩX “ m1
X we consider the morphism

g :“ 0 ˆ pr1 ˆ pr2 ˆ 0: Ω2X ˆ Ω2X Ñ Ω2X ˆ Ω2X ˆ Ω2X ˆ Ω2X.

Then we have pr1 ˝ pmΩX
ˆmΩXq ˝ s2,3 ˝ g “ mΩX

˝ p0 ˆ pr2q “ pr2 and
pr2 ˝ pmΩX

ˆ mΩXq ˝ s2,3 ˝ g “ mΩX
˝ ppr1 ˆ 0q “ pr1, therefore pmΩX

ˆ

mΩXq ˝ s2,3 ˝ g “ pr2 ˆ pr1, i. e. the “swapping morphism”. On the other
hand, we also have pr1 ˝ pm1

X ˆ m1
Xq ˝ g “ m1

X ˝ p0 ˆ pr1q “ pr1 and
pr2 ˝pm1

X ˆm1
Xq˝g “ m1

X ˝ppr2 ˆ0q “ pr2, so pm1
X ˆm1

Xq˝g “ idΩ2XˆΩ2X .
Hence, the Eckmann–Hilton identity yields

mΩX “ mΩX ˝ idΩ2XˆΩ2X

“ mΩX ˝ pm1
X ˆm1

Xq ˝ g

“ m1
X ˝ pmΩX

ˆmΩXq ˝ s2,3 ˝ g

“ m1
X ˝ ppr2 ˆ pr1q

“ mΩX ˝ ppr2 ˆ pr1q,

which means that mΩX “ m1
X is indeed a commutative multiplication.
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Now any homomorphism of group objects between abelian group ob-
jects is a homomorphism of abelian group objects and vice versa. Therefore
the commutativity of mΩX “ m1

X already implies that Ω2 factors through
Dpˇq-Ab.

Lastly, let us observe that we did not need any specifics about derivators
or the loop functor for most of the statements in this section. Indeed, proofs
of all of the statements from Remark 2.3 to Corollary 2.6 can be done for
any category C with finite products together with a functor F : C Ñ C

which factors through C-Grp and preserves products in C. In particular,
in that case, F 2 factors through C-Ab.
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3 Applications
Besides the intrinsic motivation for studying it, the loop functor can be

used to show that values of a certain type of derivators are additive.

Definition 3.1. A pointed derivator D is called stable if the loop functor
Ω: Dpˇq Ñ Dpˇq is an equivalence of categories.

Typical examples of stable derivators include the homotopy derivator
of chain complexes of modules over a ring and the homotopy derivator of
spectra (cf. [5, Section 9]).

The statements we have proven about the loop functor imply the follow-
ing result about stable derivators.

Corollary 3.2. Let D be a stable derivator. Then Dpˇq is an additive
category.

Proof. First of all, we know that Ω (and hence Ω2) is an equivalence of cat-
egories since D is stable. Now note that Ω2 : Dpˇq Ñ Dpˇq factors through
the category Dpˇq-Ab of abelian group objects in Dpˇq by Corollary 2.6
since morphisms between abelian group objects are simply homomorphisms
of underlying group objects.

We know that HomDpˇq-AbpA,Bq Ď HomDpˇqpA,Bq for all A,B P

ob Dpˇq-Ab. Now, for X,Y P Dpˇq, the map induced by Ω2 on homomor-
phism sets is a bijection onto HomDpˇq

`

Ω2X,Ω2Y
˘

which factors through
HomDpˇq-Ab

`

Ω2X,Ω2Y
˘

. Hence we have

HomDpˇq

`

Ω2X,Ω2Y
˘

“ HomDpˇq-Ab
`

Ω2X,Ω2Y
˘

,

and Ω2 is fully faithful also as a functor to Dpˇq-Ab.
This means that the essential image A of Ω2 in Dpˇq-Ab is equivalent

to Dpˇq. Ahas finite products since Dpˇq has finite products as the under-
lying category of a derivator (cf. Remark 0.16). Furthermore, A is enriched
over Ab as a full subcategory of the additive category Dpˇq-Ab (cf. Corol-
lary B.10). Hence A» Dpˇq is an additive category by Corollary B.9.

In fact, in the stable case Dpˇq is equivalent to Dpˇq-Ab as it is the
case for all additive categories.

Now we want to apply our results to all values DpAq of a derivator D.

Definition 3.3. Let A be a small category and D a derivator.
Then the shifted derivator DA is given by DApBq “ DpAˆBq on small

categories, DApuq “ DpidA ˆ uq on functors and DApγq “ DpididA
ˆ γq on

natural transformations (cf. [5, Proposition 7.32]).

DA is pointed respectively stable if D is so, hence we can obtain state-
ments about DpAq » DApˇq by considering DA as a derivator.
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Remark 3.4. Let A be a small category and D a pointed derivator.
Then the shifted loop functor

ΩA :“ pidA ˆ π q˚ ˝ pidA ˆ 8q! : DpAq Ñ DpAq

factors through DpAq-Grp and the twofold shifted loop functor
`

ΩA
˘2 fac-

tors even through DpAq-Ab.
Moreover, DpAq is an additive category if D (and hence DA) is stable.
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A The Segal Condition
In this appendix we will justify Corollary 1.8 by showing that a certain

type of simplicial objects gives rise to monoid objects.
We start with a review of simplicial objects, a concept which generalizes

simplicial sets. A more detailed introduction to simplicial sets can be found
in [8, Chapter 3].

Notation A.1. Let ∆ be the simplex category, i. e. the category of non-
empty finite ordinal numbers. For n P N set rns “ t0, . . . , nu.

For n P N and i P t0, . . . , nu we fix notation for the following morphisms
in ∆:

• δn,i : rn ´ 1s Ñ rns, n ą 0, is the unique monomorphism which “skips
i”,

• σn,i : rn ` 1s Ñ rns is the unique epimorphism which “collapses i ` 1
to i”,

• ϕn,i : r1s Ñ rns, i ă n, is the inclusion of ti, i` 1u.

In most cases, we will omit the index n if it is clear from context.
Given a category C and a simplicial object X : ∆op Ñ C, we will denote

Xprnsq by Xn. Then the above maps induce:

• dX
i :“ Xpδiq : Xn Ñ Xn´1, the i-th face morphism,

• sX
i :“ Xpσiq : Xn Ñ Xn`1, the i-th degeneracy morphism,

• fX
i :“ Xpϕiq : Xn Ñ X1.

The simplicial object in consideration will mostly be clear from context and
we will omit the upper index X in these cases.

Now we have a closer look at relations between face and degeneracy
morphisms.

Remark A.2. All morphisms in ∆ can be written as a composition of
suitable δi’s and σi’s. These maps satisfy the simplicial relations:

• δj ˝ δi “ δi ˝ δj´1 for i ă j,

• σj ˝ δi “ δi ˝ σj´1 for i ă j,

• σj ˝ δi “ id for i “ j and i “ j ` 1,

• σj ˝ δi “ δi´1 ˝ σj for i ą j,

• σj ˝ σi “ σi´1 ˝ σj for i ą j.
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Furthermore, all relations between the δi’s and the σi’s are implied by
these relations in the following sense:

For a category C, a collection pXnqnPN of objects in C with morphisms
di : Xn´1 Ñ Xn for n ą 0, 0 ď i ď n and si : Xn Ñ Xn`1 for 0 ď i ď n
yields a simplicial object X s. t. di “ Xpδiq and si “ Xpσiq iff the simplicial
identities (which are induced by the simplicial relations) hold:

• di ˝ dj “ dj´1 ˝ di for i ă j,

• di ˝ sj “ sj´1 ˝ di for i ă j,

• di ˝ sj “ id for i “ j and i “ j ` 1,

• di ˝ sj “ sj ˝ di´1 for i ą j,

• si ˝ sj “ sj ˝ si´1 for i ą j.

A relevant fact in the theory of simplicial sets is the following character-
ization of nerves of small categories which appeared in [10].

Remark A.3. Let X : ∆op Ñ Set be a simplicial set.
We define a family pX̃nqnPN together with a maps pgn : X̃n Ñ X0qnPN as

follows: Let X̃0 :“ X0 and g0 “ idX0 . Now let X̃k and gk : X̃k Ñ X0 be
given. Then we define X̃k`1 to be the fiber product X̃k ˆX0 X1, where the
structure maps are given by gk resp. d1. Furthermore, we define gk`1 to be
the map d0 ˝ pr2 : X̃k ˆX0 X1 Ñ X0.

Note that, for n ą 0, the iterated fiber product X̃n can be seen as a
subset of pX1qn and

śn´1
i“0 fi : Xn Ñ pX1qn factors through the inclusion of

X̃n.
Furthermore, a simplicial set X : ∆op Ñ Set is isomorphic to the nerve

of a (small) category if and only if the Segal condition is satisfied, i. e. for
any n ą 0, the natural map

Xn

śn´1
i“0 fi

ÝÝÝÝÝÑ X̃n,

is a bijection.

This immediately yields an alternative characterization of monoids.

Corollary A.4. Simplicial sets X P obpsSetq which have exactly one 0-
simplex (i. e. X0 – tˇu) and fulfill the Segal condition can be identified with
monoids since small categories with only one object can be identified with
monoids.

In the following we want to prove a similar statement for simplicial ob-
jects in a category. For this, some generalities on monoid objects will be
required, which can be found in [2] or [9, Section III.6].
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We know that, in general, fiber products don’t exist in values of a deriva-
tor, but products do (cf. Remark 0.16). Therefore we will restrict our atten-
tion to simplicial objects X with X0 – ˇ for a terminal object ˇ, so that
fiber products over X0 are usual products.

In the rest of this appendix Cwill be a category which has finite products
(hence an terminal object ˇ) and X : ∆op Ñ C a simplicial object in C.

Definition A.5. X is called special if πX0 : X0 Ñ ˇ is an isomorphism and
X satisfies the Segal condition, i. e.

Xn

śn´1
i“0 fi

ÝÝÝÝÝÑ Xn
1

is an isomorphism for n ą 0.
We will denote the category of special simplicial objects in Cwith natural

transformations between those as morphisms by psCqsp.

First we show that special simplicial objects give rise to monoid objects.

Proposition A.6. Let X be a special simplicial object in C.
Then X1 has a monoid object structure given by the multiplication mor-

phism
mX : X1 ˆX1

pf0ˆf1q´1
ÝÝÝÝÝÝÑ X2

d1
ÝÑ X1

and the unit morphism

eX : ˇ
pπX0 q´1

ÝÝÝÝÝÑ X0
s0
ÝÑ X1,

where we will omit the index X if it is clear from context.

Proof. For associativity we consider the diagram

X1 ˆX1 ˆX1

X2 ˆX1 X1 ˆX2

X1 ˆX1 X3 X1 ˆX1

X2 X2

X1

pf0˝pr1qˆpf1˝pr1qˆpr2

pd1˝pr1qˆpr2

pr1ˆpf0˝pr2qˆpf1˝pr2q

pr1ˆpd1˝pr2q

f0ˆf1ˆf2

d3ˆf2 f0ˆd0

d1 d2
f0ˆf1

d1

f0ˆf1

d1

.

The lower parallelogram commutes as d1˝d2 “ d1˝d1 is one of the simpli-
cial identities. Note that the upper left and upper right sides of the diagram
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are symmetric, so we will only show that the upper left part is commutative
since the commutativity of the other part can be shown similarly.

For the upper left triangle we have

pr1 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pf0 ˝ pr1q ˝ pd3 ˆ f2q

“ f0 ˝ d3 “ f0

“ pr1 ˝ pf0 ˆ f1 ˆ f2q

since ϕ0 “ δ3 ˝ ϕ0 : r1s Ñ r2s Ñ r3s. Similarly, we also have

pr2 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ f1 ˝ d3

“ f1 “ pr2 ˝ pf0 ˆ f1 ˆ f2q

since ϕ1 “ δ3 ˝ ϕ1 : r1s Ñ r2s Ñ r3s. For the third factor we have

pr3 ˝ ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pr2 ˝ pd3 ˆ f2q

“ f2 “ pr3 ˝ pf0 ˆ f1 ˆ f2q.

Hence ppf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ f0 ˆ f1 ˆ f2 since these
morphisms coincide after composing with each of the projections.

For the middle left triangle we have

pr1 ˝ ppd1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pd1 ˝ pr1q ˝ pd3 ˆ f2q

“ d1 ˝ d3 “ f0 ˝ d1 “ pr1 ˝ pf0 ˆ f1q ˝ d1

since δ1 ˝ ϕ0 “ δ3 ˝ δ1 : r1s Ñ r2s Ñ r3s. We also have

pr2 ˝ ppd1 ˝ pr1q ˆ pr2q ˝ pd3 ˆ f2q “ pr2 ˝ pd3 ˆ f2q

“ f2 “ f1 ˝ d1 “ pr2 ˝ pf0 ˆ f1q ˝ d1

since ϕ2 “ δ1 ˝ϕ1 : r1s Ñ r2s Ñ r3s. Hence the morphisms ppd1 ˝pr1q ˆpr2q ˝

pd3 ˆf2q and pf0 ˆf1q ˝d1 coincide as morphisms into the product X1 ˆX1.
Inverting the isomorphisms f0 ˆ f1 ˆ f2, pf0 ˝ pr1q ˆ pf1 ˝ pr1q ˆ pr2,

pr1 ˆ pf0 ˝ pr2q ˆ pf1 ˝ pr2q and f0 ˆ f1, we obtain a commutative diagram

X1 ˆX1 ˆX1

X2 ˆX1 X1 ˆX2

X1 ˆX1 X3 X1 ˆX1

X2 X2

X1

–

––

pd1˝pr1qˆpr2 pr1ˆpd1˝pr2q

–

d3ˆf2 f0ˆd0

d1 d2
–

d1 d1

.
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In particular, the outer compositions coincide, i. e. mX ˝ pmX ˆ pr3q “

mX ˝ ppr1 ˆmXq, which means that mX is an associative multiplication.
In order to show that e is a right unit for m, we consider the diagram

X2

X1 X1 ˆX1 X1

f0ˆf1
d1

idˆpe˝πq

s1

m

.

Then the triangle on the right commutes by the definition of m.
On the left side we have

pr1 ˝ pf0 ˆ f1q ˝ s1 “ f0 ˝ s1 “ idX1

since idr1s “ σ1 ˝ ϕ0 : r1s Ñ r2s Ñ r1s. For the second factor we have

pr2 ˝ pf0 ˆ f1q ˝ s1 “ f1 ˝ s1 “ s0 ˝ d1

since δ1 ˝ σ0 “ σ1 ˝ ϕ1 : r1s Ñ r1s, and s0 ˝ d1 “ e ˝ π since π is the unique
map into the terminal object ˇ and e : ˇ

–
ÝÑ X0

s0
ÝÑ X1 by definition. Hence

the left triangle is also commutative since pf0 ˆ f1q ˝ s1 and idX1 ˆ pe ˝ πq

agree on both factors.
The commutativity of the above diagram yields m ˝ pidX1 ˆ pe ˝ πqq “

d1 ˝ s1 “ idX1 , where the latter equality is a simplicial identity. Hence e is
indeed a right unit for m.

Now one can analogously show that the diagram

X2

X1 X1 ˆX1 X1

f0ˆf1
d1

pe˝πqˆid

s2

m

is also commutative. Hence e is also a left unit for m.

Next, we want to see that this assignment is functorial.

Lemma A.7. Let X,Y be special simplicial objects in C, and γ : X Ñ Y
a morphism of simplicial objects, i. e. a natural transformation between the
functors X,Y : ∆op Ñ C.

Then the diagram

Xn Yn

pX1qn pY1qn

śn´1
i“0 fX

i

γn

śn´1
i“0 fY

i

śn´1
i“0 pγ1˝priq

is commutative for all n P N.
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Proof. For n “ 0 the statement follows from the fact that there is a unique
morphism between the terminal objects X0 and Y0.

For n ą 0 we check the equality componentwise. Indeed, for i0 P

t0, . . . , n´ 1u we have

pri0 ˝

˜

n´1
ź

i“0
fY

i

¸

˝ γn ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ fY
i0 ˝ γn ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ γ1 ˝ fX
i0 ˝

˜

n´1
ź

i“0
fX

i

¸´1

“ γ1 ˝ pri0

“ pri0 ˝

˜

n´1
ź

i“0
pγ1 ˝ priq

¸

,

where the second equality follows from the naturality of γ.

Proposition A.8. Let γ : X Ñ Y be a morphism between special simplicial
objects.

Then γ1 : X1 Ñ Y1 is a morphism of monoid objects.

Proof. For compatibility with units consider the diagram

ˇ ˇ

X0 Y0

X1 Y0

id

– –

γ0

sX
0 sY

0
γ1

.

The upper square commutes since there is a unique morphism between two
terminal objects. The lower square commutes by the naturality of γ. Hence
γ1 is compatible with the unit.

For compatibility with the multiplication we consider the diagram

X1 ˆX1 Y1 ˆ Y1

X2 Y2

X1 Y1

pfX
0 ˆfX

1 q´1

mX

pγ1˝pr1qˆpγ1˝pr2q

pfY
0 ˆfY

1 q´1

mY

dX
1

γ2

dY
1

γ1

.

The outer “triangles” commute by the definition of mX resp. mY . The upper
rectangle commutes by the previous lemma and the lower rectangle by the
naturality of γ. Hence γ1 ˝ mX “ mY ˝ ppγ1 ˝ pr1q ˆ pγ1 ˝ pr2qq, i. e. γ1 is
compatible with the multiplication.
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Proposition A.6 and Proposition A.8 can be summarized as follows:

Corollary A.9. The functor p q1 : psCqsp Ñ C factors through the category
C-Mon of monoid objects in C.

In fact, the following stronger statement holds.

Remark A.10. Let Cbe a category with finite products. Then p q1 : psCqsp Ñ

C-Mon is an equivalence of categories.

Indeed, a quasi-inverse is given as follows:
For M P obpC-Monq with “multiplication” m : MˆM Ñ M and “unit”

e : ˇ Ñ M , we define a (special) simplicial object XM with XM
n “ Mn for

n P N, where the structure morphisms are given by

dXM

i “

$

’

’

&

’

’

%

śn
j“2 prj i “ 0

śn´1
j“0 prj i “ n

´

śi´2
j“1 prj

¯

ˆmˆ

´

śn
j“i`1 prj

¯

otherwise

for n P Ną0 and 0 ď i ď n resp.

sXM

i “

˜

i
ź

j“1
prj

¸

ˆ pe ˝ πq ˆ

˜

n
ź

j“i`1
prj

¸

for n P N.
Given a morphism f : M Ñ N of monoid objects in C, we let γf : XM ñ

XN be given by

γf
n : XM

n “ Mn
śn

i“0pf˝priq
ÝÝÝÝÝÝÝÝÑ Nn “ XN

n

for all n P N.
Since we do not use this statement we omit the tedious proof of the fact

that the given is assignment is a well-defined functor which is a quasi-inverse
for p q1 : psCqsp Ñ C-Mon.
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B Additive Categories
In this appendix we discuss certain descriptions of additive categories

which lead to the additivity of stable derivators (see Corollary 3.2).
Additive categories are covered, for example, in [9, Chapter VIII]. Here

we will follow slightly different conventions which occur in [5, Section 2]. Fur-
thermore, we will need the concepts of abelian monoid objects and abelian
group objects in a category with finite products, whose definitions are similar
to that of group objects (cf. [2] and [9, Section III.6]).

We begin with basic definitions and notations.

Definition B.1. A preadditive category is a category A s. t.

• A is pointed,

• binary (and hence all finite) products and coproducts exist in A,

• for any X,Y P ob A, the morphism

pidX ˆ 0X,Y q > p0Y,X ˆ idY q : X > Y Ñ X ˆ Y

is an isomorphism, where 0X,Y : X Ñ 0 Ñ Y resp. 0Y,X : Y Ñ 0 Ñ X
is the unique morphism which factors through a zero object.

Notation B.2. • Biproducts in the above sense will be denoted by ‘ .

• IfX, Y , X 1 resp. Y 1 are objects of a preadditive category and fX,X 1 : X Ñ

X 1, fY,X 1 : Y Ñ X 1, fX,Y 1 : X Ñ Y 1 resp. fY,Y 1 : Y Ñ Y 1 are some mor-
phisms, then we denote the morphism

pfX,X 1 ˆ fX,Y 1q > pfY,X 1 ˆ fX,X 1q : X ‘ Y Ñ X 1 ‘ Y 1

by
ˆ

fX,X 1 fY,X 1

fX,Y 1 fY,Y 1

˙

.

Note that, using the universal properties of products and coproducts,
any morphism f : X ‘ Y Ñ X 1 ‘ Y 1 can be written as

f “

ˆ

prX 1 ˝ f ˝ inX prX 1 ˝ f ˝ inY

prY 1 ˝ f ˝ inX prY 1 ˝ f ˝ inY

˙

.

Matrices of different sizes are constructed similarly.

• We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object
by 0.

Next, we want to give an alternative description of preadditive categories.
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Remark B.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X,Y P ob A, setting

f ` g : X

´

1 1
¯

ÝÝÝÝÝÑ X ‘X

¨

˝

f 0
0 g

˛

‚

ÝÝÝÝÝÑ Y ‘ Y

¨

˝

1
1

˛

‚

ÝÝÝÑ Y

for f, g P HomApX,Y q yields an abelian monoid structure on HomApX,Y q

with neutral element 0X,Y and for any X,Y, Z P ob A, the composition map

˝ : HomApY, Zq ˆ HomApX,Y q Ñ HomApX,Zq

is bilinear w. r. t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-

phisms corresponds to multiplying their matrix representations.
Proposition B.4. Let A be a category that has finite products.

Then A is preadditive if and only if it is enriched over the category
AbMon of abelian monoids, i. e. if all morphism sets of A have an abelian
monoid structure s. t. composition is bilinear.
Proof. A preadditive category has finite products by definition and Re-
mark B.3 means that it is also enriched over AbMon.

Now let A be a category that has finite products and is enriched over
AbMon. For X,Y P ob A let the “addition” in HomApX,Y q be denoted by
`X,Y and its unit by 0X,Y .

A has in particular a terminal object ˇ. The monoid structure on
HomApˇ,ˇq is trivial since ˇ is a terminal object and any monoid with
only one element is trivial. In particular, we have idˇ “ 0ˇ,ˇ.

For all X P ob A, HomApˇ, Xq has a monoid structure, hence is not
empty. Now for any f : ˇ Ñ X we have f “ f ˝ idˇ “ f ˝ 0ˇ,ˇ “ 0ˇ,X

by the bilinearity of composition. Hence HomApˇ, Xq “ t0ˇ,Xu for all
X P ob A, i. e. ˇ is also an initial object and therefore A is pointed. From
now on 0 will denote a zero object in A. Note that for any X,Y P ob A,
0X,Y is the unique morphism that factors through 0.

Let X,Y P ob A. We want to endow X ˆ Y with the structure of a
coproduct of X and Y s. t. pidX ˆ 0X,Y q > p0Y,X ˆ idY q “ idXˆY . This
enforces the structure morphisms of the coproduct to be in1 :“ idX ˆ 0X,Y

and in2 :“ 0Y,X ˆ idY .
Given Z P ob A and morphisms f1 : X Ñ Z and f2 : Y Ñ Z, define

f1 > f2 to be pf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2q. Then we have indeed

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ in1 “

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ pidX ˆ 0X,Y q “

ppf1 ˝ pr1q ˝ pidX ˆ 0X,Y qq `X,Z ppf2 ˝ pr2qq ˝ pidX ˆ 0X,Y qq “

pf1 ˝ idXq `X,Z pf2 ˝ 0X,Y q “

f1 `X,Z 0X,Z “ f1
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and similarly

ppf1 ˝ pr1q `XˆY,Z pf2 ˝ pr2qq ˝ in2 “

ppf1 ˝ pr1q ˝ p0Y,X ˆ idY qq `Y,Z ppf2 ˝ pr2qq ˝ p0Y,X ˆ idY qq “

0Y,Z `Y,Z f2 “ f2.

Next, we claim that

idXˆY “ ppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2q.

Indeed, by the bilinearity of composition we have

pr1 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq “

ppr1 ˝ ppr1 ˆ 0XˆY,Y qq `XˆY,X ppr1 ˝ p0XˆY,X ˆ pr2qq “

pr1 `XˆY,X 0XˆY,X “ pr1

and similarly

pr2 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq “ pr2.

Hence the two morphisms coincide since they agree on both factors.
Moreover, note that we have

pr1 ˝ pidX ˆ 0X,Y q ˝ pr1 “ pr1

and
pr2 ˝ pidX ˆ 0X,Y q ˝ pr1 “ 0X,Y ˝ pr1 “ 0XˆY,Y ,

which means that in1 ˝ pr1 “ pidX ˆ 0X,Y q ˝ pr1 “ pr1 ˆ 0XˆY,Y since
these morphisms agree on both factors. Similarly, we also have in2 ˝ pr2 “

p0Y,X ˆ idY q ˝ pr2 “ 0XˆY,X ˆ pr2.
Now let f 1 : X ˆ Y Ñ Z be another morphism s. t. f 1 ˝ in1 “ f1 and

f 1 ˝ in2 “ f2. Then, using the bilinearity of composition, the above calcula-
tions yield

f 1 ˝ idXˆY “ f 1 ˝ pppr1 ˆ 0XˆY,Y q `XˆY,XˆY p0XˆY,X ˆ pr2qq

“ pf 1 ˝ ppr1 ˆ 0XˆY,Y qq `XˆY,XˆY pf 1 ˝ p0XˆY,X ˆ pr2qq

“ pf 1 ˝ in1 ˝ pr1q `XˆY,XˆY pf 1 ˝ in2 ˝ pr2q

“ pf1 ˝ pr1q `XˆY,XˆY pf2 ˝ pr2q “ f1 > f2.

Hence in1 and in2 do endow X ˆY with a suitable coproduct structure.

Using this characterization we obtain a generic class of preadditive cat-
egories.

Proposition B.5. Let C be a category which has finite products.
Then the category C-AbMon of abelian monoid objects (with homomor-

phisms of monoid objects between them) is a preadditive category.
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Proof. First we note that C-AbMon can alternatively be described as fol-
lows:

obpC-AbMonq “ tM P ob C | HomCp ,Mq factors through AbMonu ,

and

HomC-AbMonpM,Nq “ tf P HomCpM,Nq |

pf˚qX : HomCpX,Mq Ñ HomCpX,Nq

is a morphisms of (abelian) monoids for all
X P ob Cu

for any M,N P obpC-AbMonq.
Hence, for any M,N P obpC-AbMonq, HomC-AbMonpM,Nq has an

abelian monoid structure given by pointwise addition and units on the level
of represented functors. Then composition is bilinear w. r. t. this addition
since morphisms between monoid objects are chosen to preserve the addition
on the homomorphism sets.

This means that C-AbMon is enriched over AbMon and hence a pread-
ditive category by the previous proposition.

Remark B.6. Remark B.3 implies also that any object X of a preadditive
category has the structure of an abelian monoid object given by the codi-
agonal morphism ∇ :“ p 1 1 q : X ‘ X Ñ X and the “unit” 0 Ñ X. Dually,
X has also the structure of a cocommutative comonoid object given by the
diagonal morphism ∆ :“ p 1

1 q : X ‘X Ñ X and the “counit” X Ñ 0.

In fact, for a preadditive category A, the functor AÑ A-AbMon which
endows an object with the above abelian monoid structure is an equivalence
of categories. However, we will neither use nor prove this statement.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We get to the concept of additive categories by requiring
that additive inverses of morphisms exist.

Proposition B.7. Let A be a preadditive category.
Then the following are equivalent:

(i) For any X P ob A, the “shear morphism”
ˆ

1 1
0 1

˙

: X ‘X Ñ X ‘X

is an isomorphism.

(ii) For any X P ob A, the identity morphism idX has an additive inverse
in EndApAq.
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(iii) For any X,Y P ob A, each f P HomApX,Y q has an additive inverse.

(iv) For any X P ob A, the abelian monoid object pX,∇, 0 Ñ Xq is an
(abelian) group object.

(v) For any X P ob A, the cocommutative comonoid object pX,∆, X Ñ 0q

is a (cocommutative) cogroup object.

Proof. “piq ñ piiq”: Let the inverse of the shear morphism of X be given by
ˆ

j1,1 j1,2
j2,1 j2,2

˙

: X ‘X Ñ X ‘X.

Then we have
ˆ

1 0
0 1

˙

“

ˆ

1 1
0 1

˙ˆ

j1,1 j1,2
j2,1 j2,2

˙

“

ˆ

j1,1 ` j2,1 j1,2 ` j2,2
j2,1 j2,2.

˙

Hence j1,2 “ 0X,X and j1,1 “ j2,2 “ idX . This yields

idX ` j1,2 “ j2,2 ` j1,2 “ 0X,X ,

so j1,2 is an additive inverse of idX .
“piiq ñ piiiq”: Let ´idX be an additive inverse for idX . Then the

bilinearity of composition yields

f`f ˝p´idXq “ f ˝ idX `f ˝p´idXq “ f ˝pidX `p´idXqq “ f ˝0X,X “ 0X,Y ,

i. e. f ˝ p´idXq is an additive inverse for f .
“piiiq ñ pivq”: Note that X is a group object in A if and only if its rep-

resented functor HomAp , Xq factors through the category Grp of groups.
Since X is an abelian monoid object, we already know that HomAp , Xq

factors through AbMon. Now the fact that for each Y P ob A each f P

HomApY,Xq has an additive inverse implies that the abelian monoids
pHomApY,Xq ,`Y,X , 0Y,Xq are in fact abelian groups. Since all monoid ho-
momorphisms between groups are already homomorphisms of groups, this
means that HomAp , Xq factors through the category of (abelian) groups.

“pivq ñ pvq”: If X is a group object with the “multiplication” given by
∇, there exists a morphism j : X Ñ X s. t.

0X,X “
`

1 1
˘

ˆ

1
j

˙

“ idX ˝ idX ` idX ˝ j “ idX ` j.

Hence for comonoid structure on X we obtain

`

1 j
˘

ˆ

1
1

˙

“ idX ˝ idX ` j ˝ idX “ idX ` j “ 0X,X .
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A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X” implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that pX,∆, X Ñ 0, jq is a cogroup
object.

“pvq ñ piq”: Let j : X Ñ X be the “coinverse” morphism w. r. t. ∆. Then
calculations similar to the ones in the proof of the previous implication yield
that idX ` j “ 0X,X “ j ` idX . Hence we obtain

ˆ

1 1
0 1

˙ˆ

1 j
0 1

˙

“

ˆ

1 ` 0 j ` 1
0 ` 0 0 ` 1

˙

“

ˆ

1 0
0 1

˙

and
ˆ

1 j
0 1

˙ˆ

1 1
0 1

˙

“

ˆ

1 ` 0 1 ` j
0 ` 0 0 ` 1

˙

“

ˆ

1 0
0 1

˙

.

Since idX‘X “ p 1 0
0 1 q, we see that the shear morphism is an isomorphism.

Definition B.8. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the previous proposition.

Additive categories also have an alternative characterization similar to
the one in Proposition B.4 for preadditive categories.

Corollary B.9. A category A which has finite products is additive if and
only if it is enriched over the category Ab of abelian groups.

Proof. If A is additive then the condition piiiq in Proposition B.7 means
that A is enriched not only over AbMon, but even over Ab since additive
inverses exist in homomorphism monoids and (bi)linear maps of abelian
groups are exactly (bi)linear maps of underlying monoids.

Conversely, if A is enriched over Ab, then A is preadditive by Proposi-
tion B.4 and the condition piiiq in Proposition B.7 is fulfilled since additive
inverses in all homomorphism monoids exist.

This characterization yields a generic class of examples which is used in
the proof of Corollary 3.2.

Corollary B.10. Let C be a category which has finite products.
Then the category C-Ab of abelian group objects (with homomorphisms

of group objects between them) is an additive category.

Proof. Like the previous corollary, this follows immediately from Proposi-
tion B.4 and the condition piiiq in Proposition B.7.

Lastly, let us mention that, similar to the case of preadditive categories,
an additive category A is in fact equivalent to the category of abelian group
objects in A.
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