Loop Objects
in Pointed Derivators

Aras Ergus
Geboren am 19. Mai 1993 in Osmangazi

29. Juni 2015
letzte Anderung am 18. Juli 2015

Bachelorarbeit Mathematik
Betreuer: Dr. Moritz Groth
Zweitgutachter: Prof. Dr. Stefan Schwede

MATHEMATISCHES INSTITUT

MATHEMATISCH- NATURWISSENSCHAFTLICHE FAKULTAT DER

RHEINISCHEN FRIEDRICH-WILHELMS-UNIVERSITAT BONN






Zusammenfassung

Ein wichtiger Ansatz in der Homotopietheorie (von topologischen Rau-
men, Kettenkomplexen usw.) ist das Studium von Homotopie(ko)limetes
bzw. allgemeiner von Homotopiekanerweiterungen. Diese verallgemeinern
viele homotopietheoretische Konstruktionen und haben niitzliche Eigenschaf-
ten, die dhnlich zu denen von klassischen Kanerweiterungen sind. Derivatore
axiomatisieren diesen Kalkiil von (Homotopie-)Kanerweiterungen und erlau-
ben uns somit, mit abstrakten Mitteln Homotopietheorie zu betreiben.

Wir betrachten zum Beispiel den Schleifenraum Q(X, z) eines punktier-
ten topologischen Raumes (X, z). Dieser kann als das Homotopiepullback
des Diagramms

*

!

¥ —— (X, 2)

aufgefasst werden, wobei % ein einpunktiger Raum ist. Auflerdem besitzt
Q(X,z) in der Homotopiekategorie von punktierten Rédumen die Struktur
eines Gruppenobjekts, was durch Verkettung und Umkehrung von Schleifen
gegeben ist.

Es gibt in der Tat analoge Konstruktionen fiir ,punktierte Derivatore®
In dieser Arbeit geht es um diese ,,Schleifenobjekte” in Werten von punk-
tierten Derivatoren. Sie beginnt mit einer Zusammenfassung von wichtigen
Definitionen und Resultaten aus der Theorie von Derivatoren. In dem ersten
Abschnitt des Hauptteils wird dann eine Gruppenobjektstruktur fiir Schlei-
fenobjekte konstruiert. Daraufhin werden im zweiten Abschnitt zweifache
Schleifenobjekte untersucht, die sogar eine abelsche Gruppenobjektstruktur
besitzen. Der Hauptteil endet mit einem kurzen Abschnitt iber Anwendun-
gen, in dem Resultate iiber stabile bzw. verschobene Derivatore bewiesen
werden.

Die Arbeit enthéalt auflerdem zwei Anhénge. Der erste Anhang behandelt
eine alternative Darstellung von Monoidobjekten mit Hilfe von der Segal-
Bedingung, die eine wesentliche Rolle bei der Konstruktion der Gruppenob-
jektstruktur von Schleifenobjekten spielt. In dem zweiten Anhang geht es
um alternative Charakterisierungen von (pré)additiven Kategorien, die in
der Untersuchung von stabilen Derivatoren verwendet werden.






Contents

miroduction

0_Preliminaried

Conventions and Notationd . . . . . . . . . . . . . . ..

A_Keview of Derivatord

L Loop Objecty
pimplicial Objects which Induce L.oop Ubjecty. . . . . . . . . . ..
Loop Ubjects as Monoid OUbjecty . . . . . . . . . . . . ... . ...
Loop OUbjects as Group Ubjecty . . . . . . . . . o o o oo oo

Double Loop ODbjects
Loop Functor as a Functor to Group OUbjecty . . . . . . . . . . ..
[Products under the Loop Functoy. . . . . . . . . .. . .. ... ..
|I'he Kckmann—Hilton Argument . . . . . . . . . . . . . ... ...

B _Applications

Appendix A 'I'he Segal Condition

Appendix b Additive Categorieg
Referenced

17
17
19
24

26
26
26
28

31

33

40

47






Introduction

Motivation

One way of studying homotopy theory (of topological spaces, chain com-
plexes etc.) is considering so-called homotopy (co)limits or more generally
homotopy Kan extensions. Besides encompassing many homotopy theoret-
ical constructions, these have very useful formal properties similar to the
properties of classical Kan extensions. The concept of a derivator provides
an abstract framework for homotopy theory by axiomatizing this calculus
of (homotopy) Kan extensions.

For example, consider the loop space Q(X,x) of a given pointed topo-
logical space (X,z). This can be thought of as the homotopy pullback of
the diagram

*

|

* — (X, 2)

where % is a space with only one point. Moreover, note that in the homotopy
category of pointed spaces, (X, x) has a group object structure given by
concatenation and inversion of loops.

There are indeed analogous constructions in the setting of so-called
“pointed derivators”. Furthermore, one can show that these “loop objects”
have a canonical group object structure, which is the main topic of this
thesis.

About This Thesis

The thesis starts with a review of derivators. It is by far not a detailed
introduction to the theory of derivators, but merely a summary of some
results which are needed later.

Having all required concepts at hand, the Erst_secfion of the main part
deals with a construction which yields a group object structure on loop
objects. Here some generalities on simplicial objects are needed, which are
covered in the [first_ appendix.

From this point on, the technical details about derivators are not very
important. One can, for instance, show that twofold loop objects have an
abelian group object structure by using a formal Eckmann—Hilton argument.
This is done in the Becond sectiod of the main part.

The main part ends with a short section on applications. The main
application is the additivity of so-called “stable derivators”. For this some
general statements about additive categories are needed, which are dealt
with in the Becond appendiy. Furthermore, it is also mentioned that these




results can be applied to not only the underlying category of a derivator,
but to all of its values.

Even though the introduction is written from a first person perspective,
the “mathematical we” will accompany the reader in the main part of the
thesis.
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0 Preliminaries

Conventions and Notations

When we consider a category, it is mostly implicit that the category in
consideration is locally small, i.e. the homomorphism classes are sets. In
a few situations we will make this explicit in order to emphasize that the
homomorphism classes are indeed sets.

There are two cases, namely Definition 1@ and Cemma T3, where we talk
about “functors” into “categories” which are not necessarily locally small.
This is also emphasized by the usage of capital letters in notations like CAT
and END. In these cases, one must indeed confront some “size issues” which
we do not want to deal with in detail. Our approach is considering these
statements as “metatheoretical” ones and explicitly writing down what they

mean.
Moreover, the diagrams we consider do not necessarily commute unless
explicitly stated.
Now we introduce some concepts and notations which will be used
throughout the thesis.

Notation 0.1. Let % denote the category which has a unique object = with
Endy (%) = idy, which is a terminal object in the category Cat of small
categories.

Notation 0.2. Let 6 be a category and A a small category. Then €4
will denote the category of functors A — € with natural transformations
between such functors as morphisms.

Note that in this case B4 is indeed a locally small category since the
class of natural transformations between two functors F,G: A — € can
essentially be seen as a subclass of [ [,.., 4 Homg(F (a),G(a)) which is a
set.

Notation 0.3. Let 6 be a category which has products and coproducts.

For a family (X;)er of objects in € we will denote the structure mor-
phisms of the product by pr;: [[;c; Xis — X;. Given a family of morphisms
(fi: Y = X;)ier in €, we will denote the induced morphism to the product
by [les fir Y = [ Lie; Xo- f I = {1,...,n} is finite, the product will alter-
natively be denoted by X; x --- x X,, and the morphism into the product
which is induced by the family (fi,..., fn) by f1 X -+ X fn.

Similarly, we will write in;: X; — [ [,.; X; for the structure morphisms
of a coproduct and [[;.; ¢i: [[;c; Xi — Y for the morphism from the co-
product which is induced by the family (g;: X; — Y );e; of morphisms. In
the finite case X 11---11.X,, resp. g111- - -11g, will be the alternative notation.

Notation 0.4. If a category € has a terminal object, we will denote it
usually by #%. Note that this is compatible with Naofafion 01 for Cat.



Furthermore, this notation will not cause any ambiguities since it will be
clear from context which category % belongs to.
Given an object X € ob €, wx will denote the unique morphism X — .

Definition 0.5. If a category 6 has an object which initial and terminal,
we call B pointed. Such an object is also called a zero object and usually
denoted by 0.

A Review of Derivators

Derivators are a way of axiomatizing (homotopy) Kan extensions and
hence allow us to describe homotopy theories in purely (2-)categorical terms.
Their theory was first developed by Heller (cf. [[1]) and Grothendieck (cf. [B]).
Later on, the stable case was studied independently by Franke (cf. [3]).

In this subsection, we will briefly review the parts of this theory which
we will need in the following sections and try to make some of our slogans
into more precise statements. While doing this, we will follow the approach
in [4] and [5], where most of the omitted proofs can be found.

We start with the definition of the underlying data of a derivator.

Definition 0.6. A prederivator & is a strict 2-functor from the category
Cat of small categories to the category CAT of all categories which is
contravariant on functors (and covariant on natural transformations).

This means that @ assigns to each small category A a category @(A), to
each functor u: A — B between small categories a functor & (u): D(B) —
P(A) and to each natural transformation p: v = v between such functors
a natural transformation @ (p): D(u) = D(v) such that everything is com-
patible with compositions and identities.

For the rest of this section @ will be a prederivator. Furthermore,
throughout the thesis we will use a shorter notation for the value of a functor
under a prederivator.

Notation 0.7. Given a functor u: A — B between small categories, we will
write u* for D (u): D(B) — D(A) as long as the prederivator in considera-
tion is clear from context.

Here the value @(A) (resp. D(B)) can be thought of as the category of
“coherent diagrams of shape A (resp. B)” and the induced functor
u*: D(B) —> D(A) as a “restriction functor” (cf. and [Exd
pmple 0.19). Indeed, if one considers @ (%) as “the underlying category
of @7, one can construct actual diagrams from coherent diagrams in the
following sense.

Remark 0.8. Given a category €, an object C' € ob ‘6 corresponds to the
functor % — 6 which sends * to C and id. to id¢. Under this identification
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a natural transformation between two functors C, D: % — 96 corresponds
to a morphism C(%) — D(x). Furthermore, this assignment induces an
isomorphism of categories between € and 6*.

Hence, given a small category A and an object a of A, one can consider
a as a functor a: ¥ — A. This yields a functor a*: D(A) — D(%). We
will denote it also by (_), and hence write f,: X, — Y, for the image of a
morphism f: X — Y in P(A) under a*.

Moreover, morphisms ¢: a — a’ in A correspond to natural transforma-
tions ¢: a = a’. Hence a morphism in A yields a natural transformation
a* = (a')* between Functors a*, (a')*: D(A) — D(%). In fact, to each
X € obD(A) we can (functorially) assign an object dias(X) of P(%)4 by
setting dia g (X)(a) == X, for objects and diajs(X)(¢) == D(¢)x: Xg — Xu
for morphisms. We call diaj(X) the underlying diagram of X.

The next step is imitating the description of (homotopy) Kan extensions
as adjoints to restriction functors.

Definition 0.9. Let u: A — B be a functor between small categories.

e We say that @ admits left Kan extensions along u if u* has a left
adjoint w. In this case we denote the unit of this adjunction by 7, ,*
and the counit by €, .

e We say that @ admits right Kan extensions along u if u* has a right
adjoint u,. In this case we denote the unit of this adjunction by 1, 4,
and the counit by €, 4, .

In order to make the definition of derivators more understandable, we
will first review the calculus of “mates” which plays a central role in the
theory derivators.

Definition 0.10. Given functors A & B % D and A % C % D between
small categories and a natural transformation u o p = ¢ o v, applying D
yields a diagram

D(A) 2~ B(B)
e Tu*
D(C) e D(D)

with a natural transformation a: p* o u™ = v* o ¢*.

Assuming that @ admits both left and right Kan extensions along all
functors involved, the corresponding adjunction units and counits yield two

diagrams
D(C) < B(A) < B(B) o s,
e e e RN
idg o) —

(D) +—— D(B)

uy

9



and

D(A) +— B(B)
v¥ z u*
D(C) +—— 2(D)

Hence we obtain natural transformations

*
" (viop )nu!,u* % % v oy % % €,y (g% 0ur) %
a!: Ul Op _ ’U|Op ou OUI _ ’U|O'U Oq Ou' _ q Ou'

and

* *
L Mp* py. (u*ogsx) " % D O Qs % % (psov™) €% g4 %
Qg U 0@y === P4OP OU 0@y == P3OV 0 0@y =———————= P40V

which we call the mate transformations associated to c.

We now summarize some important results about mates.

Remark 0.11. In the situation of the previous definition the following state-
ments hold.

e Consider the “degenerate” case where « is induced by a commutative
square

ida
—

A A
vl Vz lv
c — C

ide ’

i.e. the natural transformation id,: v = v. Then o = id,, by the
2-functoriality of @ and oy = id,, : v1 = v by the triangular identity
for the left adjoint functor v.

e Similarly, if A = C, B =D, v =idy, u = idg, p = q and the given
natural transformation p = p is id,, then o, = id,,.

o Consider a “horizontally adjacent square” as in

AL ,pB_".F

vl Y lu Y lta
¢ —>D——F
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where we call the natural transformation induced by the new square
B:r*ot* = u* os* Then we obtain a horizontal pasting

* % x P*B % % x as* % % *
Y:p ortott == p ou os == v 0q 0§ .

Furthermore, ¥ coincides with the horizontal pasting of ay and f.

e Similarly, given a “vertically adjacent square” as in

A-2.B

o e s

¢ ——D
o & |

E—">F

I

we obtain a vertical pasting p*ou™ot™ = v*ow*or* which is compatible
with ().

e q is an isomorphism if and only if o is an isomorphism.
We need one more concept before we can give a definition of derivators.

Definition 0.12. Let u: A — B be a functor between small categories and
beobB.
Then we obtain two slice categories (u/b) and (b/u) given by

ob((u/b)) = {(a, f) | a€ob A, f: u(a) — b}

and

Hom, ) ((a, f), (', f')) = {g € Homa(a,d’) | f = f ou(g)}

respectively

ob((b/u)) = {(a, f) | a € ob A, f: b — u(a)}

and

Hom(b/u)((a,f), (a’,f’)) = {g € HomA(a,a’) | f'=wu(g)o f}

There is a functor p: (u/b) — A which is given by p((a, f)) = a on objects
and p(g) = g on morphisms. Similarly, there is a functor ¢: (b/u) — A given
by ¢((a, f)) = a on objects and ¢(g) = g on morphisms.

Furthermore, there is a natural transformation ¢, from w o p to the
constant functor b o 7, that is given by f: u(p((a, f))) = u(a) — b
for each (a,f) € ob((u/b)). Similarly, there is a natural transformation
Yup: b o Ty = woq which is given by f: b — u(a) = u(q((a, f))) for
(a, f) € ob((u/b)).

13



Now we have everything at hand to define derivators.

Definition 0.13. A prederivator 9 is called a derivator if the following
conditions are satisfied:

(Derl) @ takes coproducts to products, i.e. for a family (A;);e; of small
categories the functor

[Ties in}

P (]_[ AZ-> —=n T 2(4)
i€l 1€l

is an equivalence of categories.

(Der2) For A € obCat, a morphism f: X — Y in @(A) is an isomorphism
iff for each a € ob A, f,: X, — Y, is an isomorphism in ().

(Der3) For a functor u: A — B between small categories, @ has both left
and right Kan extensions along u.

(Der4) For a functor u: A — B between small categories and an object
b € B, the mate transformation

(Puph: (myp)op® = b* owy
induced by ¢, and the mate transformation
(Wup)s: D 0 tse = (T(ppu))x 0 ¢°
induced by %, are isomorphisms.

Note that the axioms [DerI}-{Derd) do not add any new data to a pred-
erivator &, but they merely require & to have certain properties. Even
essentially does not require any choices to be made since adjoint
functors are unique up to isomorphism if they exist.

Before we proceed with some useful properties of derivators, we want to
consider some examples which are the main motivation for studying deriva-
tors. We start with a classical one which is essentially discussed in [d, Chap-
ter X] without the terminology of derivators.

Example 0.14. To each category € we can assign its represented prederiva-
tor yg which is given by

o y%(A) = 84 on small categories A € ob Cat,
e u* = ou: 6P — 64 on functors u: A — B between small categories

e (yg(a))r = Fa: Fou= Fouv for F € 8% on natural transformations
a: u = v between such functors.

14



Note that represented prederivators always satisfy [DerI) and [Der2}.

Now assume that 6 is complete and cocomplete. Then, for a functor
u: A — B, u*: €% — 64 has indeed both a left adjoint and a right adjoint,
which are given by classical Kan extensions along u. This means that
holds. Furthermore, there are “formulas” for computing these classical Kan
extensions pointwise in terms of colimits and limits which correspond to the

axiom [Der4].

Another example which is more general and more closely related to ho-
motopy theory is given by model categories. The statement in its full gen-
erality is due to Cisinski (cf. []).

Example 0.15. Let 4l be a model category. Given a small category A,
we denote by W the class of morphisms in 4(* which are pointwise weak
equivalences.

Then one can construct a derivator #o 4, called the homotopy derivator
of M, which is given by localizations J(*[W ;'] (which can be realized as
locally small categories) on objects A € obCat and restriction functors
induced by _owu: MB — M4 on functors u: A — B.

In particular, one has homotopy derivators associated with chain com-
plexes of modules over a ring, (pointed) topological spaces, (pointed) sim-
plicial sets and spectra.

Let @ be a derivator for the rest of this section. Then [DerI) and [Der3)
yield the following statement.

Remark 0.16. As the diagonal functor A: (%) — D(%)! ~ D(I) has a
left adjoint and a right adjoint for any index set I, coproducts and products
exist in D ().

In particular, @ (%) has an initial object ¢J and a terminal object %
(which is not to be confused with the terminal category ).

There are certain types of functors u: A — B for which Kan extensions
along u are particularly easy to understand.

Definition 0.17. Let u: A — B be a fully faithful functor between small
categories.

o wu is called a cosieve if for every morphism u(a) — b in B it follows
that b € essim u.

o wu is called a sieve if for every morphism b — u(a) in B it follows that
b € essim u.

Indeed, some calculations yield the following very useful statement.

15



Remark 0.18. If u: A — B is a cosieve, then X € ob(2(B)) is in the
essential image of w if and only if X}, =~ ¥ for all b € (ob B)\u(ob A).

Similarly, if u: A — B is a sieve, then X € ob(®(B)) is in the essential
image of u, if and only if X}, =~ % for all b € (ob B)\u(ob A).

There is one more relevant case in which Kan extensions can be computed
easily.
Remark 0.19. Let A be a small category.
o If A has a terminal object o0, then we have (74)(X) = X for all
X € ob(D(A)).

o If A has an initial object o, then we have (m4)«(X) = X, for all

X € ob(D(A)).

We end this section with definitions of a few concepts which play an
important role in the theory of derivators.

Definition 0.20. A square

lle

in Cat is called homotopy exact, if for any derivator €, the mate transfor-
mations associated with
*

(4) «— E(B)

o8

* *

o
v ’Z u

€(D)

T

(€)

are isomorphisms.

Note that in the situation of the previous definition, c is an isomorphism
if and only if ay is an isomorphism. In particular, means that all
“slice squares” of the form

(u/b) —— A (bju) —— A
7r<u/b>l z J“ and  n,, z Ju

are homotopy exact.
The last definition of this section brings us closer to the title of this
thesis.

Definition 0.21. 9 is called pointed if D (%) has a zero object 0.

An important class of examples for pointed derivators is given by homo-
topy derivators of pointed model categories.

16



1 Loop Objects

The aim of this section is showing that loop objects in the underlying
category of a pointed derivator have a group object structure. This is done
by constructing a special simplicial object whose first level coincides with
the loop object and then showing that there is an inversion morphism for
the induced multiplication (cf. Definifion A"H and [Proposition A.G).

Let @ be a pointed derivator throughout this section.

Simplicial Objects which Induce Loop Objects

The crucial point of our discussion of the loop objects is the fact that
they are induced by certain families of objects which have a richer structure
than that of a simplicial object.

In order to define these objects, we need a few new notations.

Notation 1.1. o Let Fin denote the category of finite sets (or equiva-
lently the category of finite discrete categories). Let (n) := {0,...,n} €
ob Fin for n e N.

o Let (_)”: Fin — Cat be the cocone functor, i.e. the functor which
adds a terminal object oo to a given category. Let _,, := (n)".

Now we can define the structures which induce the loop objects.

Definition 1.2. For a € ob Fin let w, be the composition

wa: D) L D(a”) T, (),

For n € N we will abuse notation and write w;, for w¢,,. In particular,
for the loop functor defined in [5, Definition 8.17] we have
01 (ﬂ—Jl)*
D =wi: D(¥) — D(J1) — D(%).
Before we investigate these objects further, let us have a look at how w,,
for small n behaves on the level of underlying diagrams. First we note that

0r: D(%) — D((n)”) simply “adds zeros” since 00: % — _, is a cosieve
(cf. Remark 0 1R). In particular, for wy we have

Q0 T

X ~ 0-X ~ 0.

For higher degrees we can add some intermediate steps to have a better
understanding and thus obtain

QX ——

X & ’ ()
|~
X 0

0 —

T

0
lWQX
— X

17



respectively

Qx

0 0 i\
X = \l(w)** OX ——0 0
0— 5 X \ \
O—>)l(

QX x QX — QX

o I

> 0Ox 0 5 QX x QX .

N

0 — X

We will make these pictures into precise statements in the following
pages. In particular, we will generalize the fact that ws X is isomorphic to
w1 X xw1 X and show that the Segal condition holds for (w, X ),en. However,
before we can talk about the Segal condition, we have to first show that our
construction is functorial in n.

Lemma 1.3. The assignment a — w, can be made into a functor
w: Fin°® — ENDcaT(D (%)),

i. e. for each a € ob Fin, w, is an endofunctor of D (%) and we can assign to
each map f: a — b between finite sets a natural transformation wy: wp = w,
s. t. this assignment is compatible with compositions and identities.

Proof. For a € obFin, w, is an endofunctor of & (%) by construction.
For functoriality, we consider a,b € obFin and f: a — b. Then we have
two diagrams

* — ¥ D(%) —— D(%)

ool i loo OO!J x JOO!

o L B(a”) e 207) (1)
l 7z l (WaD)*J( S J{(Ww)*

Foo® D(%) —— D(%)

where the second one is obtained from the first by applying & and then
using the appropriate mates.

Now we want to show that the upper natural transformation on the right
is an isomorphism and then define the natural transformation w;: w, = w,
as the pasting of the two squares on the right.

18



Note that we can detect such isomorphisms pointwise. In order to do
that, we consider an x € ob(a”), which yields a diagram

(0/x) —— % *
7{ Y Joo e Joo .
* —— a” = b>

Then we know that the mate transformation m7* = z*00, is an iso-
morphism since the square on the left is a slice square and hence homotopy
exact. Furthermore, we have

g x# 0
* aczoo'

(o/z) = {

Since f¥(z) = o iff x = oo, this yields that the pasting of the two squares
is also a slice square, hence homotopy exact, which means that the mate
transformation m7* = (f¥(x))*o0) is an isomorphism. Hence, in total, we
obtain that the mate transformation z*00; = (f* (z))*o0, is an isomorphism.

We can now define wy: wy, = w, to be the pasting of the inverse of co; =
(f7)*o0y with (mps )« = (me> )« (f7)*. This construction is compatible with
composition of maps since mates are compatible with pastings. Furthermore,
identities are mapped to identities since all the natural transformations in
() are identities if f is an identity map. (See BRemark 0TIl for an elaboration
of these facts.) O

We will obtain a simplicial object from w( ) by considering the simplex
category as a subcategory of Fin in the following sense.

Remark 1.4. Let A be the simplex category (cf. Nafafion A~T). Then we
have a functor ¢: A — Fin given by «([n]) = (n) on objects and «(f) = f
(as a map between sets) on morphisms. Note that ¢ is injective on objects
and faithful.

Corollary 1.5. Let X € ob(D(%)). Then (wnX)nen together with the mor-
phisms given by (w,(p))x for f € mor A is a simplicial object in D ().

Loop Objects as Monoid Objects

Our next step is showing that the simplicial objects associated with loop
objects are special (cf. Definifion A7), i. e. are trivial in the zeroth level and
satisfy the Segal condition. This will directly imply that loop objects have
a monoid object structure.

Remark 1.6. For X € ob(2(3%)) we have woX = (7 )+000X = (001X)g
since 0 is the initial object of _Jy (cf. Remark 0 T19). Hence we obtain
woX = (01 X)p = 0 since o0: % — (0) is a cosieve and 0 ¢ co(ob %) (cf.

19



This means a posteriori that the unique morphism wyX — 0 is an iso-
morphism since the unique morphism between two zero objects is always an
isomorphism.

Now we want to deal with higher levels.

Proposition 1.7. Let n > 1. We define iy,: {n —1) — {(n) to be the inclu-
sion and i), : (1) — {n) to be the function with i,,(0) = n—1 resp. i,,(1) = n.

Then the natural transformation o, : w, = wy,—1 X w1 induced by the
functor ky, = i> 11 z';f: Jdp_1 Uy — 1y i an tsomorphism.

Proof. Let J, be the category which is obtained from _, by adding two
objects wy, wy with morphisms wg — k for 0 < k < n — 1 resp. w; — k for
n — 1 < k < n and resulting compositions such that all compositions to oo
are equal. Let j,: 1, — J, denote its inclusion functor.

Let _ be the full subcategory of J,, containing wyp, wy and n — 1 (which
is isomorphic to 1), and let ,, denote its inclusion functor. Since n — 1 is
terminal in _J, we will denote it also by c0. Note that [,, has a right adjoint
ry, given by

wo x € {wp,0,...,n—2}
ro(z) = < wy x € {wy,n}

n—1 ze{n—1 0}

for z € ob J,, which defines the images of morphisms uniquely. Hence we
have I = (7).

Then, using the natural equivalence D (AlB) ~ D(A) x D(B) for A, B e
ob Cat and appropriate mates, we obtain a diagram

(%) UV G e 1)
(o0n ) s (00n 111007 )y

%
D(n) — s D111 1)

(]n)* = (TI'n71LI7r1)*
wollwy )* Tyl
%(Jn) (wollw1) @(%H%) (s ) # %(%)
UF(rn) s = (wollw1 ) Z J{id*
id* (1)

D) ——— D) ———— D(x%)

Under the equivalences mentioned above the upper natural transforma-
tion is given by

(a1 x (oon)r = ()% x (57)*) (o0n)y

which is the product of the natural transformations which occur in the
definition of w;, resp. wy (cf. (W) in the proof of Cemma T3). Hence
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it is an isomorphism as product of two natural isomorphisms. Further-
more, the right square in the last row commutes up to isomorphism since
T (wo Hwy) = T

All in all, the diagram above yields a natural transformation from

(7(1)*(7'71)*(]71)*(0071)' = (Wn)*(oon>' = Wp

to

(Tt ) s (T — 110771 ) 5 (005110001 )1 = ((7—1) 5 (90r—1)1) X ((71) % (001 )1) = wp—1 Xw1

which is the «,, mentioned in the statement of this proposition. We now
want to show that (certain restrictions of) the natural transformations in
the remaining two squares are isomorphisms, which will imply that a, is an
isomorphism.

For the middle square we consider diagrams of the form

Pz, 7, _qUmy

kn,
(ZL‘/(ﬂ'nfl L[7T1)) dp—qa Uy ——— p

W(w/(ﬂnfll—[Wl))J = 7Tn—1H7F1J( = Jjn

for z € ob(% 11 %) = {*q, *1}.
Then we have

(*0/(7Tn_1 Hﬂ'l)) ~ _J,—1 and (*1/(7Tn_1 LI7T1)) >~ g

where under this identification pu, r, 1w T€SP. Dsy,m,_iur i given by the
inclusion ¢g resp. ¢1 of the corresponding category. Since the left square is a
slice square, this means that

#0(Tn—1 1) s = (Tag/(mp_rtimn)) )5 (Prg miimy )™ = (1) s
and
# (Tn 1 U1 ) s = (T f(rp_atimy))) % (P iy )™ = (701) 0]

are isomorphisms.
On the other hand, we also have

(wo/jn) ~ Jp—1 and (wl/jn) =~ I,

where under this identification p, j, is given by i, = kpio and py, j, is

given by i’ = kyt1. Hence the pasting of the above squares is (up to

isomorphisms) also a slice square, so the natural transformations
((wo Tw1)*0)* () = WG (Gn)x = (Two/ju))# (Puwo.in)™ = (Tn1)s(i)*
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and

((wo w1)#1)* (Jn)x = Wi (Gn)s = (W(wy/j))x (Puor )™ = (T1) ()"

are also isomorphisms.
Combining these isomorphisms, we see that

w0 (Tn1 1) sk, = (Tn-1)stoky,
(1) (i)™ = W (Jin)

((wo w1 )#0)* (fn) s = g (wo Lw1)* (fin)«

lle

lle

and

#1 (-1 U m1) sk = (Tn—1)x1ky

lle

(1)« (i,7)* = W} (jn)s

((wo Twy)#*1)* (fn)s = #7 (wo Hw1)* (jn)«-

lle

Since mates are compatible with pastings this means that the natural
transformation x*(wo I wy)*(jn)sx = x*(mp—1 L m1)4kY is an isomorphism
for all = € ob(% 11 %), hence it is an isomorphism as isomorphisms can be
detected pointwise.

Note that, in general, the natural transformation
I~ (rp)s = (wollwy)s(wo Twp)*

in the first square of the last row is not an isomorphism for all X € ob((.J,,)).
We are going to “fix” this by restricting our attention to essim((jy)«(%0n)1)-
First, we compute (n—1)*(j,,)«X’ for X’ € essim(o0;): Consider the slice
square
(n - 1/.7n) L) _n

WJ 4 J]n ‘
¥

Then we know that (n — 1)*(j,)« = m.p™ is an isomorphism.

Now (n — 1/jy,) is isomorphic to the full subcategory K, of _,, spanned
by n — 1 and oo, where p corresponds to the inclusion K,, — _,, under this
identification. Hence we see that m.p* = (n — 1)*p* = (p(n — 1))* since
n — 1 is the initial object of K,. Now note that p(n — 1) is the inclusion
of n — 1 into J,. Therefore (n — 1)*(j,)+ = (n — 1)*, where the former
n — 1 is the object in J, and the latter the one in _J,. Since c0: % — _I,
is a cosieve we know that (n — 1)*X’ >~ 0 for X’ € essim(o0;), so we obtain
(n—1)*(jn)+ X" = 0.

This means that for X € essim((jn)«(90n)1) we have 0** X =~ ([,,00)* X =~
(n —1)*X = 0. On the other hand, for any ¥ € @(% LI %), we have
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0*(wo U wy)«Y = 0 since wo 1wy is a sieve. Hence I} =~ (r,)s and
(wo w1 )« (wp L wy)* agree on o0 =n — 1 for X € essim((jin )« (90n)1).
We now consider w; for i € {0,1}. In the slice square

(wi/wo L wy) —— %1%

7{ = onuun ’

(wi/wo T wy) can be identified with % and p with #;: ¥ — % I %. On the
other hand, in the slice square

(wi/ry) L/> Jn

J{"’n ’
_

(w;/ry) can be identified with the subcategory W; of J,, spanned by objects
under w;, i.e. objects x s.t. there exists a morphism f: w; — x. Under this
identification p’ becomes the inclusion of W;.

Hence we obtain a cube

™

A

()*
D(W;) D(Jn)
w;k (wollwy ) *
/ T /
D (%) — D (%11 %) (rn) %
J (onwl)* ,
™ ST R— 2 (1)
id* id*
B (%) - D)

where the faces are filled with the natural transformations considered above.

Now upper and lower faces commute by the functoriality of @. Hence
the pasting of the back face with the left face coincides with the pasting of
the right face with the front face since both are induced by the equality of
rnp wi = ry(wo Hwy)*; to w;.

The left face commutes up to isomorphism since w; is the initial object
of W; and hence (7w, ) = w; holds. Moreover, the front face and the back
face are induced by slice squares, so they are also filled with isomorphisms.
Hence the pasting of (ry, )« = (wollwy )« (wollwy )* with w] (wollwy )y = myx
is an isomorphism. Inverting w(wg L wy)s = T, we see that w (ry). =
w (wo Hwy )« (wp Hwy)* is an isomorphism.
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All in all, for X € essim((jp)«(90n)1), (7n)sx = (wo w1 )4 (wowy)* is an
isomorphism pointwise, so it is indeed an isomorphism. This means that the
last remaining natural transformation is also an isomorphism in the relevant
case, SO Oy, Wp = Wp_1 X w1 iS an isomorphism in total. O

Thus we obtain a monoid object structure on w1 X = QX for X €
ob(D (%)) as follows:

Corollary 1.8. Let pu: (1) — (2) be the map with u(0) = 0 resp. p(1) = 2
and let € be the unique map from (1) to {0).

Then for any X € ob(D (%)), w1 X = QX has a monoid object structure
given by the multiplication

(') x

mx: le X le wQX M le

and the unit

0: 0 2> woX 9%, 4 X,

Proof. The previous proposition and the preceding remark imply that the
Segal morphism

wnX — (le)n

is an isomorphism for any n € N. Then we have wgX =~ 0 and the simplicial
object induced by w( )X : Fin°® — (%) satisfies the Segal condition, so it
is a special simplicial object. Therefore w1 X = QX has a natural monoid
object structure (cf. [Proposition A.G).

Now note that [n] € ob A and ¢([n]) = (n) € obFin are equal as sets
for all n € N. Furthermore, we have is = ¢¥, iy = ¢!, p = 6! and ¢ = 0¥ as
maps between sets (cf. Nofafion AT). Hence the monoid object structure
on w; X which is induced by the special simplicial object corresponding to
w( )X is indeed given by the morphisms my and 0. O

Loop Objects as Group Objects

The last step in this section is the construction of inverses for the mul-
tiplication of loop objects, concluding that loop objects have a group object
structure. The crucial point here is the additional structure Fin carries in
comparison to A.

Proposition 1.9. Let o: (1) — (1) be the only non-trivial automorphism,
i. e. the map swapping 0 and 1.

Then, for any X € ob(D(%)), the morphism given by (wy)x: w1 X —
w1 X is an inversion morphism for the multiplication mx of QX = w1 X.

Proof. We have to show that the composition z = mx o (idx % (ws)x)
factors through woX = 0, i.e. is the zero morphism. In order to do this we
will describe z as a morphism which factors through ws X.
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Let ¢: (2) — (1) be the map with ¢(0) = 0 = ¢(2) and ¢(1) = 1. We
claim that the diagram

(wg)x we X (wp)x
l(am

w1 X —> w1 X X w X — w1 X

commutes.
The right triangle commutes by the definition of myx. We verify the
commutativity of the left triangle componentwise. Indeed, we have

pry o (wip X wy ) © (Wg)x = wiy © (We)x = (Weoiz) x = (Widyyy) X
= idle = pr;o (idwlx X (wJ)X)
and
pry © (Wiy X wir ) © (we)x = wy, © (We)x = (Wgoi ) x = (Wo)x
= pry © (idw, x X (We)x)
since ¢ o iy = id¢yy and ¢ o i = 0.
Hence we obtain that
z=mx o (idx X (ws)x)

= (wp)x o (az )x o (az)x o (we)x
= (wp)x © (wg)x = (Weou)x

Now note that ¢ o u factors through (0) as ¢(1(0)) = ¢(0) = 0 = ¢(2)
#(1(0)). Hence z = (wgop) x factors through woX = 0.

(|
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2 Double Loop Objects

The considerations of the previous section yield a group object structure
on a twofold loop object Q2X because it is the loop object of the object
QX in D(%). In this section, we will show that this group object structure
is abelian. In order to do that, we will first define a “new” group object
structure on Q2X. Then, using a formal Eckmann-Hilton argument (cf.
[2]), we will prove that these two structures coincide and are abelian.

In this section @ will again be a pointed derivator.

Loop Functor as a Functor to Group Objects

An important result which we need is the fact that the loop functor
factors through the category @(%)-Grp of group objects in P (%) also on
the level of morphisms.

Lemma 2.1. Let f: X —> Y be a morphism in D(%).

Then the induced morphism QU f : QX — QY is a homomorphism of group
objects in D (%), where QX and QY are endowed with the group object struc-
ture discussed in the previous section.

Proof. First we note that the functors w( )X, w )Y : Fin®® — (%) induce
special simplicial objects as discussed in the previous section. Furthermore,
a morphism f: X — Y induces morphisms wg f: weX — w,Y for a € ob Fin.
This assignment is natural in a since for a given u: a — b, the diagram

waeX Lf> waY

(wu)x| [y

WbX TJ) WbY

commutes since w, is a natural transformation by CemmaT73.
Hence w( )f: w )X = w( )Y induces a morphism of monoid objects

QX = w X 2=, Ly — v

as a natural transformation between special simplicial objects (cf.
EionA"R). Now any morphism of monoid objects between group objects is
already a morphism of group objects. (This can be, for example, checked
on represented functors and hence can be reduced to the fact that a monoid
homomorphism between groups is already a group homomorphism.) ]

Products under the Loop Functor

Now we will prove another result that brings us closer to the Eckmann—
Hilton argument, namely show that ) preserves products.
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Remark 2.2. Note that the functor Q: D (%) — D(x%) has a left adjoint
Y: D(%) > D(%) (cf. [6, Proposition 8.18]).
Hence (2 preserves limits. In particular, the natural morphism

(H X; ) e 200, TTx,

el el

is an isomorphism for any index set I and any family (X;);e; of objects in
D(%).

This immediately implies that also the group object structure on loop
objects are compatible with products.

Remark 2.3. For X,Y € ob (%), the isomorphism

QX x v) 2@ oy gy

is also a homomorphism of group objects since it is the product of two group
object homomorphisms. Hence it is already an isomorphism of group objects
since commutativity of compatibility diagrams for Q(pr;) x Q(prsy) implies
the commutativity of compatibility diagrams for its inverse.

This endows Q(X x Y') with the structure of a product of QX and QY
as group objects s. t.

multox <oy =((2(pry) x Q(pry)) x (2(pry) x Q(pry))) o ma(xxy)
o (((2(pry) x Q(pra)) ™" x (Qpry) x Qpra)) ™),

where multoxxoy: (2X x QY) x (QX x QY) - QX x QY is the multipli-
cation morphism of the product group object.

Furthermore, the compatibility of €2 with products yields a “new” group
object structure on double loop objects.

Corollary 2.4. For X € ob(D(%)), Q*(X) has (in addition to the one
given by being the loop object of QX)) a group object structure given by the
multiplication

miX': QQ(X)Xﬂz(X) (Q(pry) xQ(pry)) L Q(QXXQX) MQ(Q(X)) :Q2X,

the unit

0— O°X

and inverses
Q2X Q(wo)x) QQX

Proof. The commutativity of the required diagrams follow from the fact that
the corresponding diagrams commute before applying €. O
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The Eckmann—Hilton Argument

We now have everything at hand to imitate the standard proof of the
fact that a group object in Grp is an abelian group in order to show the
main result of this section.

Lemma 2.5. Let X € obD(%). Let sa3 := pry X prg x pry x pry: (22X)* —
(Q2X)* be the morphism which “swaps the second and the third factor”
Then the diagram

02X x 02X x 02X x Q2X o238 O2X x 02X x Q%X x 02X
m’X xm/Xl imnx Xmaox
02X x O2X 02X x O2X

\/

Proof. We first note that the diagram

15 commutative.

QX x QX) x QX x QX)

QX)) x QLX) Q(QX x QX)

M’ Q(0X)) m
(2)

commutes since Q(myx): QQX x QX) — Q(2(X)) is a homomorphism of
group objects by Lemma 21l

Now (max x mqox) o s23 is the multiplication morphism of 02X x Q02X
By Bemark 273 this morphism also coincides with mqx«xqx up to “conju-
gation” with (Q(pr;) x Q(pry)) x (Q(pry) x Q(pry)).

Hence, identifying Q(QX x QX) with 92X x Q2X via Q(pr;) x Q(pry),
the diagram (B) becomes a commutative diagram

02X x 02X x 02X x O2X

mly xm'y; ZT (max Xmax )os2,3
Q(OQX x QX) x 22X x QX) 02X x O2X
mox xQx Tz

/
Q(QX) x QQX)
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which contains the required diagram as its front square. O

Corollary 2.6. The “group laws” mqx and m'y on Q?X coincide and are
abelian.

In particular, Q%: D(%) — D(%) factors through the category D(%)-Ab
of abelian group objects in D(%).

Proof. Consider the morphism
f=pr; x0x0xpry: O?X x X - X x X x Q%X x Q°X.

Then we have pr; o (mq, x max)osgso f =mq, o(pr; x0) = pr; and
pry o (may X max)osa30 f =mq, o (pry x 0) = pry since 0 — Q?X is the
unit morphism for mgq, . Hence we have (mq, xmax)osazof =idgex<a2x
as these morphisms agree after composing with each of the projections.

Furthermore, we also have pr; o (m'y x m’y) o f = m/y o (pr; x 0) = pry
and pry o (my x m'y) o f = m'y o (pry x 0) = pry since 0 — Q2X is also the
unit morphism for m/y. Hence (my x m/y) o f =idg2xxn2x as these agree
after composing with each of the projections.

In total, using the Eckmann—Hilton identity from the previous lemma),
we obtain

mox = max °idg2xxo2x
:mQXO(le Xmlx)of
=m'y o (may X max)osazof

= mly oidgex xo2x = M.
For the commutativity of mgx = m’y we consider the morphism
g =0 x pry x pry x 0: O2X x 02X - 02X x Q%X x Q02X x Q%X.

Then we have pr; o (mg, X max)os2309 = mq, © (0 x pry) = pry and
pry o (Mo, X mox) o 230 ¢ = mq, o (pr; x 0) = pry, therefore (mq, x
max) © $23 0 g = Pry X pry, i.e. the “swapping morphism”. On the other
hand, we also have pr; o (m’y x m'y)og = m/y o (0 x pry) = pr; and
bryo (mly X mly)og = ml o (pry X 0) = pry, 50 (mly x mlx)0g = idgax 2y

Hence, the Eckmann—Hilton identity yields

mox = max ©idg2xo2x
= maqx o (mly x mly)og
= m/X o (mQX X mQ)() e} 5273 og
= m/X o (pry x pry)

= max © (pry x pry),

which means that mqgx = m/y is indeed a commutative multiplication.
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Now any homomorphism of group objects between abelian group ob-
jects is a homomorphism of abelian group objects and vice versa. Therefore
the commutativity of mox = m/y already implies that 02 factors through
D (%)-Ab. O

Lastly, let us observe that we did not need any specifics about derivators
or the loop functor for most of the statements in this section. Indeed, proofs
of all of the statements from Bemark 23 to [Corollary 2.6 can be done for
any category ‘6 with finite products together with a functor F': € — €
which factors through 6-Grp and preserves products in 6. In particular,
in that case, F? factors through 6€-Ab.
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3 Applications

Besides the intrinsic motivation for studying it, the loop functor can be
used to show that values of a certain type of derivators are additive.

Definition 3.1. A pointed derivator @ is called stable if the loop functor
Q: D(%) > D(%) is an equivalence of categories.

Typical examples of stable derivators include the homotopy derivator
of chain complexes of modules over a ring and the homotopy derivator of
spectra (cf. [, Section 9]).

The statements we have proven about the loop functor imply the follow-
ing result about stable derivators.

Corollary 3.2. Let D be a stable derivator. Then D(%) is an additive
category.

Proof. First of all, we know that © (and hence Q?) is an equivalence of cat-
egories since 9 is stable. Now note that Q%: 9 (%) — D (%) factors through
the category @ (%)-Ab of abelian group objects in (%) by
since morphisms between abelian group objects are simply homomorphisms
of underlying group objects.

We know that Homg (4. ap(A4,B) S Homgy)(A, B) for all A, B €
ob P (%)-Ab. Now, for X,Y € (%), the map induced by Q2% on homomor-
phism sets is a bijection onto Homg,(y) (QQX ) QQY) which factors through
Homg(y)-Ab (QQX, QQY). Hence we have

Homg, () (22X, Q%Y) = Homg(x).ab (X, %),

and Q2 is fully faithful also as a functor to @(%)-Ab.

This means that the essential image o of Q2 in @ (%)-Ab is equivalent
to D(%). o has finite products since P (%) has finite products as the under-
lying category of a derivator (cf. Remark 0 16). Furthermore, o is enriched
over Ab as a full subcategory of the additive category @ (%)-Ab (cf. Corold
[ary B.10). Hence ol ~ (%) is an additive category by [Corollary B.9. [

In fact, in the stable case @ (%) is equivalent to P (%)-Ab as it is the
case for all additive categories.
Now we want to apply our results to all values @(A) of a derivator 9.

Definition 3.3. Let A be a small category and & a derivator.

Then the shifted derivator D4 is given by @4(B) = (A x B) on small
categories, D (u) = D(ida x u) on functors and D4(y) = D(idiq,, x ) on
natural transformations (cf. [H, Proposition 7.32]).

P4 is pointed respectively stable if @ is so, hence we can obtain state-
ments about D(A) ~ D4 (%) by considering D4 as a derivator.
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Remark 3.4. Let A be a small category and & a pointed derivator.
Then the shifted loop functor

Q4 = (idg x 7)) 0 (idg x 00);: D(A) — D(A)

factors through @(A)-Grp and the twofold shifted loop functor (QA)2 fac-
tors even through &(A)-Ab.
Moreover, D(A) is an additive category if @ (and hence @4) is stable.
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A The Segal Condition

In this appendix we will justify by showing that a certain
type of simplicial objects gives rise to monoid objects.

We start with a review of simplicial objects, a concept which generalizes
simplicial sets. A more detailed introduction to simplicial sets can be found
in [8, Chapter 3].

Notation A.1. Let A be the simplex category, i.e. the category of non-

empty finite ordinal numbers. For n € N set [n] = {0,...,n}.
For ne N and i€ {0,...,n} we fix notation for the following morphisms
in A:

e 0™ [n—1] — [n], n > 0, is the unique monomorphism which “skips

2
/L7

e o™ [n+ 1] — [n] is the unique epimorphism which “collapses i + 1
to 1”7,

o @™ [1] — [n], i < n, is the inclusion of {i,4 + 1}.

In most cases, we will omit the index n if it is clear from context.
Given a category 6 and a simplicial object X : A°? — 6, we will denote
X([n]) by X,. Then the above maps induce:

o d¥ = X(6): X, > X,,_1, the i-th face morphism,

o sX = X(0"): X, > X141, the i-th degeneracy morphism,

] le = X((Z)Z) Xn —>X1.

The simplicial object in consideration will mostly be clear from context and
we will omit the upper index X in these cases.

Now we have a closer look at relations between face and degeneracy
morphisms.

Remark A.2. All morphisms in A can be written as a composition of
suitable 6’s and ¢%’s. These maps satisfy the simplicial relations:

o« /08" =6806"fori<j,
e 0708 =500t fori < j,
e« 0lod =idfori=jandi=j+1,
e« 0lod =6"1oogl fori>j,
1

e gloo"=0""007 fori>j.
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Furthermore, all relations between the §”’s and the o%’s are implied by
these relations in the following sense:

For a category 6, a collection (X, )nen of objects in 6 with morphisms
di: Xp-1 > Xpforn>0,0<it<nands;: X, > Xyp1for0<i<n
yields a simplicial object X s.t. d; = X (6°) and s; = X (0?) iff the simplicial
identities (which are induced by the simplicial relations) hold:

o diodj=dj_iod;fori<yj,
e djosj=sj_q10d;fori<j,
e diosj=idfori=jandi=j+1,
o dios;j=sjod;_q fori>j,
e S;08j=5;08;_1 fori>j.

A relevant fact in the theory of simplicial sets is the following character-
ization of nerves of small categories which appeared in [I0].

Remark A.3. Let X: A° — Set be a simplicial set.

We define a family (Xn)neN together with a maps (g, : X, — X0)nen as
follows: Let Xy := Xy and gy = idx,. Now let X, and gi: X, — Xo be
given. Then we define Xj,; to be the fiber product Xy X x, X1, where the
structure maps are given by g resp. di. Furthermore, we define gi1 to be
the map d() O pry: Xk X X X1 - X().

Note that, for n > 0, the iterated fiber product X, can be seen as a
subset of (X7)™ and 1_[?;01 it Xp — (X1)" factors through the inclusion of
Xn.

Furthermore, a simplicial set X: A°? — Set is isomorphic to the nerve
of a (small) category if and only if the Segal condition is satisfied, i.e. for
any n > 0, the natural map

H?;OI fz ot

X Xn,

is a bijection.
This immediately yields an alternative characterization of monoids.

Corollary A.4. Simplicial sets X € ob(sSet) which have ezxactly one 0-
simplez (i.e. Xo = {*}) and fulfill the Segal condition can be identified with
monoids since small categories with only one object can be identified with
monoids.

In the following we want to prove a similar statement for simplicial ob-
jects in a category. For this, some generalities on monoid objects will be
required, which can be found in [2] or [9, Section IIL.6].
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We know that, in general, fiber products don’t exist in values of a deriva-
tor, but products do (cf. Remark 0 T6). Therefore we will restrict our atten-
tion to simplicial objects X with Xy =~ % for a terminal object %, so that
fiber products over X are usual products.

In the rest of this appendix € will be a category which has finite products
(hence an terminal object %) and X : A°? — € a simplicial object in 6.

Definition A.5. X is called special if mx,: X¢o — #% is an isomorphism and
X satisfies the Segal condition, i.e.

n—1 ¢,
Xn Hizo fi

X7
is an isomorphism for n > 0.

We will denote the category of special simplicial objects in 6 with natural
transformations between those as morphisms by (s6)P.

First we show that special simplicial objects give rise to monoid objects.

Proposition A.6. Let X be a special simplicial object in 6.
Then X1 has a monoid object structure given by the multiplication mor-
phism

1
(fOXfl) X2 i)Xl

mx: X1 X X1
and the unit morphism

(TrX())_l

ExX: % —— XO Xl,
where we will omit the index X if it is clear from context.

Proof. For associativity we consider the diagram

X1 X Xl X Xl
(fooml)x(floprl)xpy Wﬂ)omz)x(homz)
XQ X Xl fox fix fa Xl X Xg
(diopry) XprQi \ / iprlx(dloph)
X f2 foxdo

X xX, @ X1 x Xy

foxfﬁ / \ Tfoxfl
\ /

The lower parallelogram commutes as d;ody = dqod; is one of the simpli-
cial identities. Note that the upper left and upper right sides of the diagram
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are symmetric, so we will only show that the upper left part is commutative
since the commutativity of the other part can be shown similarly.
For the upper left triangle we have

pry o ((foopry) x (f1opry) x pry) o (dz x fa) = (foopry) o (ds x f2)
= foods = fo
=pry o (fo x fi x f2)
since ¢ = 6% 0 ¢¥: [1] — [2] — [3]. Similarly, we also have
pry o ((foopry) x (f1opry) x pry) o (dz x f2) = f1ods
= fi =prao(fox f1 X fa)
since ¢t = % o ¢1: [1] — [2] — [3]. For the third factor we have
prz o ((foopry) x (fiopry) x pry) o (dz x f2) = pryo (ds x fa)
= fa=przo (fo x fi x f2).

Hence ((fo opr;) x (fi opry) X pry) o (ds x fa) = fo x f1 x fa since these
morphisms coincide after composing with each of the projections.
For the middle left triangle we have

pry © ((d1 opry) x pry) o (dz x f2) = (di o pry) o (d3 x f2)
=dyods = foody =pryo(fox fi)o
since ' o ¢! = §3 0 61: [1] — [2] — [3]. We also have
pry o ((d1 o pry) x pry) o (ds x f2) = pryo(ds x f2)
=fo=fiodi =pryo(fox fi)od

since ¢? = §log!: [1] — [2] — [3]. Hence the morphisms ((d; opr;) x pry) o
(ds x f2) and (fo x f1) ody coincide as morphisms into the product X; x Xj.

Inverting the isomorphisms fo x fi % fa, (fo o pry) x (f1 o pry) x pry,
pr; x (foopry) x (f1opry) and fy x f1, we obtain a commutative diagram

X1><X1><X1

e
I1e

X2><X1 X1XX2

(d1opry) XprQl \ / lpn (d1opry)
Xl % Xl d3x f2 Joxdo Xl % Xl .

R,
x)ﬁ/
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In particular, the outer compositions coincide, i.e. mx o (mx X pry) =
mx o (pry x my), which means that myx is an associative multiplication.
In order to show that e is a right unit for m, we consider the diagram

X9
/ lfON‘
X1 X X1 —m X1

Ligx (eon’)

Then the triangle on the right commutes by the definition of m.
On the left side we have

pri o (fo x fi)os1 = foos =idx,

since idpy) = o' 0 ¢°: [1] — [2] — [1]. For the second factor we have

proo (fox fi)osi = fiosi =spods

since 0! 0 0¥ = ol o ¢ [1] — [1], and sp o dy = e o 7 since 7 is the unique
map into the terminal object % and e: % = X0 X, by definition. Hence
the left triangle is also commutative since (fy x f1) o s1 and idx, x (eo )
agree on both factors.

The commutativity of the above diagram yields m o (idx, x (eom)) =
dy o 51 = idx,, where the latter equality is a simplicial identity. Hence e is
indeed a right unit for m.

Now one can analogously show that the diagram

/ lﬁ’N

X1XX14>X1

(eomr) ><1d
is also commutative. Hence e is also a left unit for m. O
Next, we want to see that this assignment is functorial.

Lemma A.7. Let X,Y be special simplicial objects in 6, and v: X — Y
a morphism of simplicial objects, i. e. a natural transformation between the
functors X, Y : AP — 6.

Then the diagram

1s commutative for all n € N.
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Proof. For n = 0 the statement follows from the fact that there is a unique
morphism between the terminal objects Xy and Y.

For n > 0 we check the equality componentwise. Indeed, for iy €
{0,...,n — 1} we have

n—1 n—1 -1 n—1 -1
priOO(Hfiy>ovnO<Hsz> = Jﬁwm( ff)
=0 =0 ;

X
271ofi0 O<
= 71 © PTy,

n—1
= pr;, © (H(% o pri)> 7

1=0

s 3
I |
) —
]
<
N——
L

where the second equality follows from the naturality of ~. O

Proposition A.8. Let v: X — Y be a morphism between special simplicial
objects.
Then ~1: X1 — Y1 is a morphism of monoid objects.

Proof. For compatibility with units consider the diagram

% id %

:JW E

XO*O>Y'0

| |
Y

X1*1>Y70

The upper square commutes since there is a unique morphism between two
terminal objects. The lower square commutes by the naturality of «v. Hence
71 is compatible with the unit.

For compatibility with the multiplication we consider the diagram

X, x X3 (v10pry) X (v10P13) Vi x Y3
l(fé(xff()*l (f&“xff)*ll
mx | Xy = Yy |my -
| %]
X, n Vi

The outer “triangles” commute by the definition of mx resp. my. The upper
rectangle commutes by the previous lemma and the lower rectangle by the
naturality of 7. Hence 71 o mx = my o ((y1 opry) x (71 0 pry)), i.e. 71 is
compatible with the multiplication. ]
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[Proposition A.d and [Proposition A.g can be summarized as follows:

Corollary A.9. The functor (_)1: (s€)°® — @ factors through the category
6-Mon of monoid objects in 6.

In fact, the following stronger statement holds.

Remark A.10. Let 6 be a category with finite products. Then (_);: (s€)*®* —
6-Mon is an equivalence of categories.

Indeed, a quasi-inverse is given as follows:

For M € ob(6-Mon) with “multiplication” m: M x M — M and “unit”
e: % — M, we define a (special) simplicial object X with X = M" for
n € N, where the structure morphisms are given by

[ 1= pr; 1=0
M -1 .
d;;X = H?:() pT; t=n
(H;fl prj> X m X (H?:Hl prj> otherwise

for n € Nyog and 0 < ¢ < n resp.

SlXM _ (Epr]) x (eom) x < H prj>

j=it+1

for n € N.
Given a morphism f: M — N of monoid objects in €, we let v/ : XM —
XN be given by

I xM e izoUepn),

N" =X}
for all n € N.

Since we do not use this statement we omit the tedious proof of the fact
that the given is assignment is a well-defined functor which is a quasi-inverse
for (U)1: (s6)*® — 6-Mon.
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B Additive Categories

In this appendix we discuss certain descriptions of additive categories
which lead to the additivity of stable derivators (see [Corollary 3.9).

Additive categories are covered, for example, in [0, Chapter VIII]. Here
we will follow slightly different conventions which occur in [H, Section 2]. Fur-
thermore, we will need the concepts of abelian monoid objects and abelian
group objects in a category with finite products, whose definitions are similar
to that of group objects (cf. [2] and [9, Section II1.6]).

We begin with basic definitions and notations.

Definition B.1. A preadditive category is a category o s.t.
o 9l is pointed,
o binary (and hence all finite) products and coproducts exist in o,

e for any X,Y € obd, the morphism
(idX X OX,Y)U(OY,X X idy): XY - X xY

is an isomorphism, where Oxy: X — 0 — Y resp. Oy x: Y - 0 — X
is the unique morphism which factors through a zero object.

Notation B.2. e Biproducts in the above sense will be denoted by _@®_.

o If X,Y, X' resp. Y’ are objects of a preadditive category and fx x/: X —
X' fyx:Y - X' fxyr: X > Y resp. fyy: Y — Y’ are some mor-
phisms, then we denote the morphism

(fxx x fxy)U(fyx x fxx): X®Y > X' @Y’

(fX,X/ fY,X')

Ixy fry

Note that, using the universal properties of products and coproducts,
any morphism f: X @Y — X' @Y’ can be written as

by

fe prxso foinxy prys o foiny
~ \pryso foiny pry;ofoiny /)’

Matrices of different sizes are constructed similarly.

o We will also use common abuses of notation such as denoting an iden-
tity morphism by 1 or a morphism that factors through a zero object
by 0.

Next, we want to give an alternative description of preadditive categories.
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Remark B.3. A preadditive category is enriched over the category AbMon
of abelian monoids. Indeed, for any X,Y € ob 9, setting

ay . os) ()

f+g: X —> XX Y®Y —5Y
for f,g € Homy(X,Y') yields an abelian monoid structure on Homg(X,Y)
with neutral element Oxy and for any X,Y,Z € obdl, the composition map

_o_: Homy(Y,Z) x Homy(X,Y) — Homy (X, Z)

is bilinear w.r.t. this “addition operation”.
Furthermore, a straightforward computation shows that composing mor-
phisms corresponds to multiplying their matrix representations.

Proposition B.4. Let o be a category that has finite products.

Then A is preadditive if and only if it is enriched over the category
AbMon of abelian monoids, 1. e. if all morphism sets of A have an abelian
monoid structure s.t. composition is bilinear.

Proof. A preadditive category has finite products by definition and Red
mark B3 means that it is also enriched over AbMon.

Now let o be a category that has finite products and is enriched over
AbMon. For X|Y € obd let the “addition” in Homg(X,Y") be denoted by
+x,y and its unit by Ox y.

9 has in particular a terminal object %. The monoid structure on
Homg (%, %) is trivial since % is a terminal object and any monoid with
only one element is trivial. In particular, we have idy = Oy .

For all X € obdl, Homgy(%,X) has a monoid structure, hence is not
empty. Now for any f: % — X we have f = foidgy = foOx s = Ox x
by the bilinearity of composition. Hence Homgy(%,X) = {0y x} for all
X e obd, i.e. % is also an initial object and therefore o is pointed. From
now on 0 will denote a zero object in d. Note that for any X,Y € obd,
Ox,y is the unique morphism that factors through 0.

Let X,Y € obdd. We want to endow X x Y with the structure of a
coproduct of X and Y s.t. (idX X Oij) I (OY,X X idy) = idxxy. This
enforces the structure morphisms of the coproduct to be in; = idx x Oxy
and in2 = OY,X X idy.

Given Z € obd and morphisms fi: X — Z and fo: Y — Z, define
fill fa to be (fi opry) +xxv,z (f2 o pry). Then we have indeed

((fiopry) +xxv,z (faopry))oing =
((fiopry) +xxv,z (f20pry)) o (idx x Oxy) =
((fiopry) o (idx x Oxy)) +x,z ((f20prp)) o (idx x Oxy)) =
(ficidx) +x,z (f200xy) =
fi+x,2z0x2=fi
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and similarly

((fiopr)) +xxv,z (f20pry)) oing =
((fropry) o (Oy,x x idy)) +v,z ((f20pr2)) 0 (Oy,x x idy)) =
Ov,z +v,z f2 = fo.

Next, we claim that
idxxy = (pr; X Oxxy,y) +xxv,xxy (0xxv,x X pra).

Indeed, by the bilinearity of composition we have

pry o ((pry X Oxxvy) +xxv,xxv (Oxxv,x X pry)) =
(pry o (pry x Oxxvy)) +xxv,x (pry o (Oxxy,x X pry)) =

pri +xxv,x Oxxy,x = pry
and similarly

pry o ((pry X Oxxv,y) +xxv,xxy (Oxxy,x X pPry)) = pra.

Hence the two morphisms coincide since they agree on both factors.
Moreover, note that we have

pry© (idX X 0X,Y) o pry = pry
and
pryo (idx x Oxy)opr; = Oxy opr; = Oxxy,y,

which means that in; o pry = (idx x Oxy) o pr; = pr; x Oxxy,y since
these morphisms agree on both factors. Similarly, we also have ing o pry =
(OY,X X idy) o pry = OXXY,X X Ppry.

Now let f': X x Y — Z be another morphism s.t. f/ oin; = f; and
f'oing = f5. Then, using the bilinearity of composition, the above calcula-
tions yield

foidxxy = f o ((pr; x Oxxyy) +xxv.xxy (Oxxy.x X pra))
= (f"o(pry x Oxxvy)) +xxv,xxy (f"© (Oxxy,x X pry))
= (f'oini o pry) +xxv,xxy (f' 0ing o pry)
= (fiopry) +xxv,xxy (f20pry) = f11 fa.

Hence in; and ing do endow X x Y with a suitable coproduct structure. [

Using this characterization we obtain a generic class of preadditive cat-
egories.

Proposition B.5. Let 6 be a category which has finite products.
Then the category 6-AbMon of abelian monoid objects (with homomor-
phisms of monoid objects between them) is a preadditive category.
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Proof. First we note that €-AbMon can alternatively be described as fol-
lows:

ob(6-AbMon) = {M € ob € | Homg(_, M) factors through AbMon},
and

Homeg abMon (M, N) = {f € Homg (M, N) |
(f*)X: HOHlfg(X, M) - HOng(X, N)
is a morphisms of (abelian) monoids for all
X € ob6}

for any M, N € ob(6-AbMon).

Hence, for any M, N € ob(6-AbMon), Homg_ apmMon(M, N) has an
abelian monoid structure given by pointwise addition and units on the level
of represented functors. Then composition is bilinear w.r.t. this addition
since morphisms between monoid objects are chosen to preserve the addition
on the homomorphism sets.

This means that 6-AbMon is enriched over AbMon and hence a pread-
ditive category by the previous propositiod. O

Remark B.6. Remark B3 implies also that any object X of a preadditive
category has the structure of an abelian monoid object given by the codi-
agonal morphism V := (11): X ® X — X and the “unit” 0 — X. Dually,
X has also the structure of a cocommutative comonoid object given by the
diagonal morphism A = (1): X ® X — X and the “counit” X — 0.

In fact, for a preadditive category o, the functor d — dd-AbMon which
endows an object with the above abelian monoid structure is an equivalence
of categories. However, we will neither use nor prove this statement.

As the prefix “pre” suggests, preadditive categories are not quite what
we are looking for. We get to the concept of additive categories by requiring
that additive inverses of morphisms exist.

Proposition B.7. Let A be a preadditive category.
Then the following are equivalent:

(i) For any X € obdl, the “shear morphism”

11
(O 1).X@X—>X(—BX

s an tsomorphism.

(i) For any X € obd, the identity morphism idx has an additive inverse
in Endg(A).
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(iii) For any X,Y € obd, each f € Homg(X,Y') has an additive inverse.

(iv) For any X € obd, the abelian monoid object (X,V,0 — X) is an
(abelian) group object.

(v) For any X € obdl, the cocommutative comonoid object (X, A, X — 0)
is a (cocommutative) cogroup object.

Proof. “(i) = (i1)”: Let the inverse of the shear morphism of X be given by

(‘7.“ *7.172> XBX > XD X.
J2,1 J2,2

Then we have

(1 0> _ (1 1) <j1,1 jl,z) _ <j1,1 +21 Ji2 +j2,2>
01 0 1) \J21 Ja22 J2,1 J2,2-
Hence j172 = OX,X and j171 = j2,2 = idx. This yieldS

idx + j1,2 = je2 + j12 = Ox x,

so ji2 is an additive inverse of idx.
“(it) = (1i1)”: Let —idx be an additive inverse for idx. Then the
bilinearity of composition yields

f—l—fo(—idx) = foidyx ~|—fo(—idx) = fo(idx—l-(—idx)) = fOOX7X =0xy,

i.e. fo(—idx) is an additive inverse for f.

“(#i1) = (iv)”: Note that X is a group object in o if and only if its rep-
resented functor Homg(_, X) factors through the category Grp of groups.
Since X is an abelian monoid object, we already know that Homg(_, X)
factors through AbMon. Now the fact that for each Y € obof each f €
Homg (Y, X) has an additive inverse implies that the abelian monoids
(Homg (Y, X),+v,x,0y,x) are in fact abelian groups. Since all monoid ho-
momorphisms between groups are already homomorphisms of groups, this
means that Homg(_, X') factors through the category of (abelian) groups.

“(iv) = (v)”: If X is a group object with the “multiplication” given by
V, there exists a morphism j: X — X s.t.

1 .. )
Ox,x = (1 1) (]) =idyoidy +idx oj =idx + J.

Hence for comonoid structure on X we obtain
(1 ]) <1> =idxoidy +joidxy =idx +j = 0x x.
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A similar argument shows that the fact that j is also a “left inverse for
the multiplication of X implies that j is also a “left inverse for the comul-
tiplication of X”. In total, we obtain that (X,A, X — 0,7) is a cogroup
object.

“(v) = (i)": Let j: X — X be the “coinverse” morphism w.r.t. A. Then
calculations similar to the ones in the proof of the previous implication yield
that idyx +j = Ox x = j +idx. Hence we obtain

1 1\ /1 j\ (140 j+1\ (1 0
0 1/\0 1) \0o+0 0+1/ \0o 1
1 7\ /1 1\ (140 144\ (1 0
0 1)J\o 1) \o+0 0o+1) \o 1/°

Since idxgx = (§ ), we see that the shear morphism is an isomorphism. [

and

Definition B.8. A preadditive category is called additive if it satisfies one
(and hence all) of the conditions in the previous proposition.

Additive categories also have an alternative characterization similar to
the one in [Proposition B.4 for preadditive categories.

Corollary B.9. A category A which has finite products is additive if and
only if it is enriched over the category Ab of abelian groups.

Proof. If o is additive then the condition (ii7) in [Proposition B.7 means
that of is enriched not only over AbMon, but even over Ab since additive
inverses exist in homomorphism monoids and (bi)linear maps of abelian
groups are exactly (bi)linear maps of underlying monoids.

Conversely, if d is enriched over Ab, then o is preadditive by
Eion B4 and the condition (i4¢) in [Proposition B.17 is fulfilled since additive
inverses in all homomorphism monoids exist. O

This characterization yields a generic class of examples which is used in
the proof of Corollary 3.2.

Corollary B.10. Let 6 be a category which has finite products.
Then the category 6-Ab of abelian group objects (with homomorphisms
of group objects between them) is an additive category.

Proof. Like the previous corollary], this follows immediately from
Eion B and the condition (ii¢) in [Proposition B.1. O

Lastly, let us mention that, similar to the case of preadditive categories,
an additive category o is in fact equivalent to the category of abelian group
objects in .
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