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Why should homotopy theorists care about homotopy
type theory?

HoTT provides a “synthetic” framework in which one can only
talk about “homotopically correct” statements and constructions.

For example, in this world,
‚ all maps one can write down are continuous (if between

spaces) / functorial (if between categories),
‚ two functions are “equal” if they are homotopic,
‚ in particular, one cannot distinguish between (homotopy)

equivalent objects,
‚ “unique” means that the space of choices is contractible.
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What does this buy us?

This alternative language is arguably simpler and more intuitive.

For example, one can prove the following version of the Yoneda
lemma which (with a little bit of sloppy notation) looks a lot like
the classical one:

Theorem (Theorem 9.1)
Let A be an 8-category, C Ñ A a covariant family and a P A.
Then the following is an equivalence:

Ca NatpHompa,´q, Cp´qq

u pf ÞÑ Cf puqq

ϕpIdaq ϕ
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What’s the catch?

‚ In any given such framework, that are things we cannot
express in it which are nevertheless interesting in concrete
models.

‚ One has to know how to “interpet the synthetic language in
the real world”. Making this translation work is rather
tedious.
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The model we will mimic

While trying to axiomatize the theory of 8-categories, we will
draw inspiration from (complete) Segal spaces.

There are several reasons for this choice.
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A “type-theoretic” reason

Reedy fibrant simplicial spaces is a model of “ordinary” homotopy
type theory, so we can try to augment this model to be able to
talk about (complete) Segal spaces.

N.B. We cannot extend the classical simplicial model of HoTT to
quasicategories because types in this model corresponds to Kan
complexes, so not every 8-category would have an “underlying
type”.
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First “homotopy-theoretic” reason

The Segal condition for Reedy fibrant simplicial spaces can be
expressed in terms of a single equivalence of simplicial spaces:

Definition
The horizontal embedding of a simplicial set X is the simplicial
space X is given by Xk,l :“ Xk for all k, l P N.
For n P N and i P t0, . . . , nu, let F pnq be the horizontal
embedding of ∆n and Lpn, iq the horizontal embedding of Λn

i .

Theorem (Theorem A.21)
A Reedy fibrant simplicial space X is a Segal space if and only if

MappF p2q,X q Ñ MappLp2, 1q,X q

is a trivial Reedy fibration.
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Another “homotopy-theoretic” reason

Similarly, completeness for Segal spaces can be expressed in terms
of a single equivalence of simplicial spaces:

Definition
Let E p1q be the horizontal embedding of the nerve of the
“walking isomorphism” (i. e. the category with two distinct objects
and a unique isomorphism between them).

Theorem (Theorem A.25)
A Segal space X is complete if and only if

MappE p1q,X q Ñ MappF p0q,X q – X

is a trivial Reedy fibration.
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Bear with me please

We will need to know a bit about the syntax and semantics of
type theory to understand/appreciate why the synthetic theory
works the way it does.

However, we won’t state all the rules needed to make our type
theory work (and be sloppy while dealing with rules we do state),
and gloss over many details while describing how type-theoretic
and homotopy-/category-theoretic notions relate to each other.
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Judgements

Definition
A judgement ϕ is, morally speaking, a statement we make in our
theory.

Example
‚ K

‚ s ď t ^ t ď u
‚ 1 “ 0
‚ A type
‚ pa, bq : A ˆ B
‚ p ” pπ1ppq, π2ppqq

‚
ś

x :A B type (where x can occur in B as a variable)
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Contexts

Definition
A context Γ is a (“well-formed”) finite list of judgements. It can
be thought of as the collection of assumptions we are currently
working under.
We will work with expressions that look like

Γ $ ϕ,

which more or less means that

the judgement ϕ can be made under the assumption of the
judgements in Γ.
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Inference rules
Inference rules are essentially the axioms which tell us when we
can deduce statements of the form Γ $ ϕ. We depict such a rule
as a list of premises separated from their conclusion by a vertical
line.
Example

Γ $ ‹ : 1
,

Γ $ x ” y Γ $ y ” z
Γ $ x ” z

,
Γ $ ϕ

Γ $ ϕ_ ψ
,

Γ $ A type Γ $ a : 0
Γ $ ind0pA, aq : A

,
Γ $ A type Γ, x : A $ B type

Γ $
ź

x :A
B type

.

N.B. The last example demonstrates that we do need the extra
inference layer to write down all axioms – we couldn’t introduce
and then bind variables with just $.
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(Dependent) type theories

Definition
A logical system consists of a grammar describing well-formed
judgements and a collection of inference rules.
Type theory is a blurry term for a logical system that involves
“type-level” judgements like A type, “inhabitance” judgements like
a : A and “term-level” judgements like x ” y .
A type theory is called dependent if its types are allowed to
depend on terms of other types.1

In fact, our “type theory” for 8-categories will have two
additional layers dealing with the combinatorics of simplices, their
boundaries, horns etc.

1A typical case when a type depends on terms of other types is when one
has an “equality type” x “A y for x , y : A.
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Models

Definition
A model of a logical system is a concrete mathematical object in
which its judgements correspond to concrete mathematical
statements.

Usually, one agrees on a common form for those “models”.

Example
There is a logical system for group theory, with judgements like
@g @h g ¨ h ¨ g´1 ¨ h “ e and inference rules describing group
axioms.
One can interpret ¨, e and p´q´1 in any group, so it’s reasonable
to say that every concrete group is a model for this logical system.



Motivation Why CSS? Interlude Syntax Semantics TT with shapes

Models

Definition
A model of a logical system is a concrete mathematical object in
which its judgements correspond to concrete mathematical
statements.

Usually, one agrees on a common form for those “models”.

Example
There is a logical system for group theory, with judgements like
@g @h g ¨ h ¨ g´1 ¨ h “ e and inference rules describing group
axioms.
One can interpret ¨, e and p´q´1 in any group, so it’s reasonable
to say that every concrete group is a model for this logical system.



Motivation Why CSS? Interlude Syntax Semantics TT with shapes

Models

Definition
A model of a logical system is a concrete mathematical object in
which its judgements correspond to concrete mathematical
statements.

Usually, one agrees on a common form for those “models”.

Example
There is a logical system for group theory, with judgements like
@g @h g ¨ h ¨ g´1 ¨ h “ e and inference rules describing group
axioms.
One can interpret ¨, e and p´q´1 in any group, so it’s reasonable
to say that every concrete group is a model for this logical system.



Motivation Why CSS? Interlude Syntax Semantics TT with shapes

Basic categorical semantics for type theories

There is an evident similarity between type-theoretic and
category-theoretic constructions which you may have seen quite a
few times by now:

Category theory Type theory
object type

morphism term of a function type
initial/terminal object 0/1
categorical product product type

. . . . . .

Hence we should be able to interpret certain categories as a
“category of types” modeling our type theory.
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Incorporating dependence into the semantics
Given a type A, there are (in general) types B which only exist
under the assumption x : A (i. e. x : A $ B type). Moreover, we
could iterate this process, i. e. consider types that exist in the
context x : A, y : B; or more generally have a “category of types”
for every context Γ.

In order to reflect this in our models, we will enhance our
“category of types” in the following ways:

1. We will work with a category C of contexts, where morphisms
are “inferences”.

2. We will have a Grothendieck fibration T Ñ C where the fiber
over Γ P C corresponds to “the category of types that exist in
the context Γ”.

3. We will have a functor T Ñ Cr1s that corresponds to
mapping A over Γ (meaning that Γ $ A type) to
pΓ, x : Aq Ñ Γ.
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Dependent types in practice

Usually, the fiber TC over C P C is some sort of overcategory C{C ,
so we can extend our analogy as follows:

Category theory Type theory
terminal object ˚ empty context

D Ñ C in C{C c : C $ Dc type
composite D Ñ C Ñ ˚ c : C $ Dc type  $

ř

c:C Dc type
right adjoint to C ˆ˚ p´q c : C $ Dc type  $

ś

c:C Dc type
. . . . . .
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A problem

Recall that in order to be able to express the Segal condition and
completeness for a simplicial space X , we need to work with
simplicial spaces of the form MappK ,X q for horizontal
embeddings K of certain “small” simplicial sets like ∆n or Λn

i .

However, these horizontal embeddings are not (necessarily) Reedy
fibrant, so we need to incorporate them into our synthetic theory
separately.
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A solution
We will restrict our attention to subsimplicial sets of p∆1qn’s
(which include in particular ∆n’s, B∆n’s, Λn

i ’s etc.).

Definition
A cube is a finite product of copies of r1s. We consider it as a
partial order.
A tope φ (in k variables) is a proposition in k variables
constructed using 0 and 1 (where 0, 1 P r1s), ”, ď, conjuctions
and disjunctions.
A shape is a subset of a cube r1sk of the form
tpt1, . . . , tkq P I|φpt1, . . . , tkqu where φ is a tope in k variables.

Example
‚ ∆n – tpt1, . . . , tnq P r1sn|t1 ď . . . ď tnu can be realized as a

shape.
‚ Λ2

1 can be realized as tps, tq P r1s2|s ” 1 _ t ” 0u.
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A tope φ (in k variables) is a proposition in k variables
constructed using 0 and 1 (where 0, 1 P r1s), ”, ď, conjuctions
and disjunctions.
A shape is a subset of a cube r1sk of the form
tpt1, . . . , tkq P I|φpt1, . . . , tkqu where φ is a tope in k variables.

Example
‚ ∆n – tpt1, . . . , tnq P r1sn|t1 ď . . . ď tnu can be realized as a

shape.
‚ Λ2

1 can be realized as tps, tq P r1s2|s ” 1 _ t ” 0u.
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Cubes and topes in type theory
We will introduce new syntax in our logical system to encode
cubes and topes.
This will result in three different types of judgements and contexts:
One for cubes (usually Ξ), one for topes (usually Φ) and one for
usual type theory with dependent types (usually Γ).
Some inference rules for the first two “layers” are:

Example

I cube J cube
I ˆ J cube

,
Ξ $ 0 : r1s

,

Ξ $ s : I Ξ $ t : I
Ξ $ s ” t tope

,
Ξ|Φ $ φ^ ψ

Ξ|Φ $ ψ
,
x : r1s|¨ $ x ď 1
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Shapes in type theory

Convention

tt : I|φu shape

will be a shorthand for

I cube and t : I $ φ tope.
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Extension types

Next, we determine how shapes and types interact.
For every shape tt : I|ψu and every type A we would like to have
a type of functions tt : I|ψu Ñ A.
For this, it is enough to construct a type of extensions

tt : I|φu A

tt : I|ψu

for t : I|φ $ ψ.
Now, we can also make the target “vary in elements of tt : I|φu” –
in other words, instead of extensions of functions, we can more
generally look for extensions of a section of a fibration.
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Some rules for extension types

tt : I|φu shape
tt : I|ψu shape t : I|φ $ ψ Ξ|Φ $ Γ context
Ξ, t : I|Φ, ψ|Γ $ A type Ξ, t : I|Φ, φ|Γ $ a : A

Ξ|Φ|Γ $ x
ź

t:I|ψ
A|φa y

tt : I|φu shape
tt : I|ψu shape t : I|φ $ ψ Ξ|Φ $ Γ context
Ξ, t : I|Φ, ψ|Γ $ A type Ξ, t : I|Φ, φ|Γ $ a : A
Ξ, t : I|Φ, ψ|Γ $ b : A Ξ, t : I|Φ, φ|Γ $ b ” a

Ξ|Φ|Γ $ λt I|ψ.b : x
ź

t:I|ψ
A|φa y
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The final model

Y � X � T ãÑ r1sn T pC2q
r1s

C1

X � T ãÑ r1sn C2

T ãÑ r1sn C1

r1sn C0
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