Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

On descendable algebras aka some results from A. Mathew's "The galois group of a stable homotopy theory"

Aras Ergus

May 2020

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Outline

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくで

Aras Ergus

1 First definitions

2 Interlude on pro-objects

3 Descendable algebras and descent as we know it

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Convention

Fix a (presentable) stable ∞ -category C with a symmetric monoidal structure (with tensor product \otimes and unit 1) such that the tensor product commutes with colimits (or as Mathew calls it, a "stable homotopy theory").

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Some tensor triangular algebra

Definition

A full subcategory $\mathcal{D} \subseteq \mathcal{C}$ is called *thick* of if it is closed under finite limits, finite colimits and retracts.

Definition

A full subcategory $\mathcal{I} \subseteq \mathcal{C}$ is called a \otimes -*ideal* if for all $A \in \mathcal{C}$, $X \in \mathcal{I}$, $A \otimes X \in \mathcal{I}$.

Definition

A *thick* \otimes *-ideal* is a thick subcategory that is also a \otimes -ideal.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Descendable algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Definition

A commutative algebra $A \in Alg_{Comm}(\mathcal{C})$ is called *descendable* if **1** is in the thick \otimes -ideal generated by A.

Remark

This also yields a concept of descendable morphism by considering a morphism $f : A \rightarrow B$ of commutative algebras as an object in $Alg_{Comm}(Mod_{\mathcal{C}}(A))$ (and $Mod_{\mathcal{C}}(A)$ as the "stable homotopy theory" in the background).

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Examples of descendable algebras

Example

Let R be a commutative ring spectrum. Then the following are descendable R-algebras:

- **1** If R is discrete and $I \subseteq R$ is a nilpotent ideal, then R/I.
- $\mathbb{R}[x^{-1}] \times R_x^{\widehat{}} \text{ for } x \in \pi_0 R.$
- **3** Any finite faithful Galois extension of R.
- Any R-algebra A such that
 - $\pi_0 R \rightarrow \pi_0 A$ is faithfully flat,
 - for i > 0, $\pi_i R \otimes_{\pi_0 R} \pi_0 A \to \pi_i A$ is an isomorphism and
 - $\pi_0 A$ has a presentation as a $\pi_0 R$ -algebra with at most \aleph_k generators and relations for some $k \in \mathbb{N}$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

6 If R is connective and $\pi_i R \cong 0$ for large enough *i*, then $\pi_0 R$.

Aras Ergus

First definition:

Interlude on pro-objects

Descendable algebras and descent as we know it

The category of pro-objects

Definition

The category of pro-objects in $\ensuremath{\mathcal{C}}$ is

 $\mathsf{Pro}(\mathcal{C}) := \mathsf{Ind}(\mathcal{C}^{\mathrm{op}})^{\mathrm{op}}.$

Proposition (Modulo size issues; HTT 5.3.5.10.) There is a functor $\iota: C \to Pro(C)$ such that for every ∞ -category \mathcal{D} admitting cofiltered limits, restriction along ι induces an equivalence

$$\mathsf{Fun}^{\textit{cofilt-cont}}(\mathsf{Pro}(\mathcal{C}), \mathcal{D}) \simeq \mathsf{Fun}(\mathcal{C}, \mathcal{D})$$

where the left hand side denotes the category of functors that commute with cofiltered limits.

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Diagrams as pro-objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Convention

Given a cofiltered diagram $F: I \rightarrow C$, we will consider it as an object of Pro(C) by taking the limit of the composite

$$I \xrightarrow{F} \mathcal{C} \xrightarrow{\iota} \mathsf{Pro}(\mathcal{C}).$$

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Constant pro-objects

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition

A pro-object is called *constant* if it is in the essential image of $\iota \colon \mathcal{C} \to \mathsf{Pro}(\mathcal{C}).$

Example

The pro-object associated to a constant diagram is a constant pro-object.

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

A criterion for being constant

Proposition

The pro-object associated to a cofiltered diagram $F: I \rightarrow C$ is constant if and only if F admits a limit in C that is preserved by every functor that preserves finite limits.

Example

If X^{\bullet} is a cosimplicial object that admits a split coaugmentation, then the associated tower

$$\ldots \to \operatorname{Tot}_2 X^{\bullet} \to \operatorname{Tot}_1 X^{\bullet} \to \operatorname{Tot}_0 X^{\bullet}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

of partial totalizations defines a constant pro-object.

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

The Amitsur complex of a descendable algebra – the statement

Proposition

 $A \in \operatorname{Alg}_{\operatorname{Comm}} \mathcal{C}$ is descendable if and only if the map $\operatorname{const}_1 \to \mathcal{C}^{\bullet}(A)$ induced by the cougmentation of the Amitsur complex induces an equivalence between the pro-objects associated to the respective towers of partial totalizations.

Remark

The condition in the proposition means in particular that the tower of partial totalizations associated to $C^{\bullet}(A)$ is pro-constant.

Corollary

(*Exact?*) (strong?) symmetric monoidal fuctors preserve descendable algebras.

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

The Amitsur complex of a descendable algebra – a proof sketch

Proof sketch.

(\implies) Check that the subcategory spanned all $X \in \mathcal{C}$ such that $\operatorname{const}_X \to \mathcal{C}^{\bullet}(A) \otimes X$ induces a pro-equivalence between the associated towers of partial totalizations is a thick \otimes -ideal. Note that A is in this subcategory because $C^{\bullet}_+(A) \otimes A$ is split, so, by descendability, $\mathbf{1}$ is too.

(\Leftarrow): The (homotopy) inverse of the map induced by const₁ $\rightarrow C^{\bullet}(A)$ between the pro-objects associated to towers of partial totalizations amounts to a map $\operatorname{Tot}_n(C^{\bullet}(A)) \rightarrow \mathbf{1}$ for large enough *n* such that the composite $\mathbf{1} \rightarrow \operatorname{Tot}_n(C^{\bullet}(A)) \rightarrow \mathbf{1}$ is homotopic to the identity. Now $\operatorname{Tot}_n(C^{\bullet}(A))$ is in the thick \otimes -ideal generated by *A*, so $\mathbf{1}$, which is a retract of the former, is too.

Aras Ergus

First definitions

Interlude on pro-objects

Descendable algebras and descent as we know it

Descendability and comonadicity

Proposition

If A is a descendable algebra, then the extension-restriction of scalars adjunction $C \rightleftharpoons Mod_{\mathcal{C}}(A)$ is comonadic.

Proof sketch.

We use the Barr-Beck-Lurie (co)monadicity theorem:

- Let M ∈ C such that M ⊗ A ≃ 0. Then the subcategory spanned by X ∈ C such that M ⊗ X ≃ 0 is a thick ⊗-ideal containing A. Hence it contains 1, which implies M ≃ M ⊗ 1 ≃ 0. Thus (−) ⊗ A is conservative.
- 2 Let X[⊗] be an A-split cosimplicial object in C. Check that the subcategory spanned by Y ∈ C such that X[•] ⊗ Y has a pro-constant tower is a thick ⊗-ideal containing A. Hence it contains 1, which implies that X[•] admits a limit which is preserved under tensoring with A.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで