
Morita Theory
for Derived Categories of Algebras

Aras Ergus

February 6, 2016

This work is licensed under a Creative Commons
“Attribution-ShareAlike 4.0 International” license.

Contents
1 Differential Graded Algebras 2

2 Recollections on Derived Categories 5

3 Derived Equivalences 8

4 Examples 11

These notes and the talk they are typed for is essentially an exposition of (parts of)
[Kel98]. Some examples and proof ideas are taken from [Sch04].

The notations and conventions which were introduced in previous talks were tried to
be preserved as long as it made sense to do so. Furthermore, the following conventions
are running assumptions for the whole text.

• k is a commutative ring and all maps, functors etc. are assumed to be k-linear.

• Modules are right modules.

• When we consider complexes, we use the cohomological notation, i. e. the differ-
entials increase the degree.

• When we talk of a full subcategory, it is implicit that the subcategory is closed
under isomorphisms in the ambient category. (This property was sometimes called
“repleteness” or “strictness”.)
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1 Differential Graded Algebras
Definition 1.1. A a differental graded k-algebra (or DG algebra) is a Z-graded k-algebra
A “

À

pPZ Ap equipped with a k-linear differential d : A Ñ A which is homogeneous of
degree 1 and satisfies the graded Leibniz rule, i. e.

• Ap ¨ Aq Ď Ap`q (“graded”),

• dpApq Ď Ap`1 (“homogeneous of degree 1”),

• d2 “ 0 (“differential”),

• dpa ¨ bq “ pdaq ¨ b ` p´1qp ¨ a ¨ pdbq for all a P Ap, b P A (“Leibniz rule”).

A morphism of DG algebras is a morphism of graded algebras which commutes with
the differentials.

Example 1.2. Every k-algebra R (in the usual sense) yields a DG algebra A “
À

pPZ Ap

by setting

Ap
“

#

R p “ 0
0 p ‰ 0

,

d “ 0 and extending the multiplication of R by zero.

Notation 1.3. Given an ordinary algebra R, we will sometimes abuse notation and
denote also the DG algebra obtained from it by R.

Remark 1.4. In the following we are going to generalize some constructions for algebras
to DG algebras and use the same notation for both of types of constructions. This abuse
of notation is justified by the fact that if one applies the constructions in the “DG world”
to the DG algebra obtained from an ordinary algebra as in Example 1.2, one gets the
corresponding constructions for complexes over that algebra.

We now fix DG algebras A and B until the end of this section.

Definition 1.5. A (right) a differential graded module over A (or DG A-module) is a Z-
graded (right) A-module M “

À

pPZ Mp endowed with a k-linear differential d : M Ñ M
which is homogeneous of degree 1 and satisfies the graded Leibniz rule, i. e.

• Mp ¨ Aq Ď Mp`q (“graded”),

• dpMpq Ď Mp`1 (“homogeneous of degree 1”),

• d2 “ 0 (“differential”),

• dpm ¨ aq “ pdmq ¨ a ` p´1qp ¨ m ¨ pdaq for all m P Mp, a P A (“Leibniz rule”).

Left DG modules are defined analogously.
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Definition 1.6. A morphism of DG modules is a morphism of underlying graded mod-
ules which is homogeneous of degree 0 and commutes with the differential.

This concept of morphisms yields the category DG-Mod ´ A of DG A-modules.

Definition 1.7. The opposite Aop of a DG algebra is defined to be the same graded
k-module with the same differential, equipped with the multiplication

a ¨Aop a1
“ p´1q

p¨p1

a1
¨A a

for a P pAopqp, a1 P pAopqp1 .

Remark 1.8. A left DG A-module is “the same” as a (right) DG Aop-module.

Example 1.9. In the situation of Example 1.2, the category of DG modules over (the
DG algebra obtained from) an ordinary algebra can be identified with the category of
complexes over that algebra (by “forgetting all the graded pieces of the algebra except
the 0-th piece“).

Example 1.10. Every DG algebra becomes a DG module over itself via the multipli-
cation action.

Remark 1.11. For all DG A-modules M , the map

HomDG-Mod´ApA, Mq Ñ Z0M, f ÞÑ fp1q

is an isomorphism.

Definition 1.12. A DG A-B-bimodule X “
À

pPZ Xp is simultaneously graded left A-
module and a graded graded right B-module s. t. the two actions agree on k, commute
and X is endowed with a k-linear homogeneous differential of degree 1 which satisfies

dpa ¨ x ¨ bq “ pdaq ¨ x ¨ b ` p´1q
p

¨ a ¨ pdxq ¨ b ` p´1q
p`q

¨ a ¨ x ¨ pdbq

for all a P Ap, x P Xq and b P B.

Definition 1.13. We define the DG algebra A bk B to be

pA bk Bq
n

“ bp`q“nAp
bk Bq,

equipped with the differential given by

dpa b bq “ pdaq b b ` p´1q
pa b pdbq

for a P Ap, b P B, and the multiplication given by

pa b a1
q ¨ pb b b1

q “ p´1q
q¨p1

pa ¨ a1
q b pb ¨ b1

q

for a P A, a1 P Ap1 , b P Bq, b1 P B.

Remark 1.14. A DG A-B-bimodule is “the same” as a DG pAop b Bq-module.
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Definition 1.15. Given a DG A-module M and a DG A-B-bimodule X, we define their
tensor product as

M bA X “

˜

à

mPZ

˜

à

p`q“m

Mp
bk Xq

¸¸

äxma b x ´ m b ax | a P A, m P M, x P Xy,

equipped with the differential induced by the rule

dpm b xq “ pdmq b x ` p´1q
p

¨ m b pdxq

for all m P Mp and x P X.

Remark 1.16. Let X be a DG A-B bimodule and M a DG A-module.

• M bA X can be endowed with the structure of a DG B-module via the action
inherited from X.

• The assignment M ÞÑ M bA X is functorial.

Definition 1.17. Given a DG A-B-bimodule X and a DG B-module N , we define
HomBpX, Nq by setting

pHomBpX, Nqq
n

“ tf : X Ñ N | f graded B-module homomorphism,
homogeneous of degree nu

with differential given by
df “ d ˝ f ´ p´1q

nf ˝ d

for all f P HomBpX, Nqqn.

Remark 1.18. Let N be a DG B-module and X be a DG A-B bimodule.

• HomBpX, Nq can be endowed with the structure of a DG A-module via pf ¨aqpxq “

fpa ¨ xq for all f P pHomBpX, Nqqn and x P X.

• The assignment N ÞÑ HomBpX, Nq is functorial.

Remark 1.19. Given a DG A-B-bimodule X, we obtain an adjunction

p‚q bA X : DG-Mod ´ A Õ DG-Mod ´ B : HomBpX, ‹q .

Remark 1.20. Let N and N 1 be DG B modules.

• Setting A to be k (hence considering N as a k-B-module) in Definition 1.17, we
obtain a DG k-module HomBpN, N 1q.

• Z0pHomBpN, N 1qq consists of morphisms of DG B-modules from N to N 1 (cf
Remark 1.11).

4



• EndBpNq “ HomBpN, Nq has the structure of a DG algebra whose multiplication
is given by composition of morphisms. (Note that if f : N Ñ N is of degree i and
g : N Ñ N is of degree j, then f ˝ g : N Ñ N is of degree i ` j, i. e. composition
indeed respects the degree.)

• HomBpN, N 1q has the structure of a DG EndBpNq-module, where (homogeneous
pieces of) EndBpNq acts on (homogeneous pieces of) HomBpN, N 1q via precom-
position.

2 Recollections on Derived Categories
Next, we want to define homotopy categories and the derived categories in the DG

setting, which generalize the constructions we had in previous talks.
A and B will again be fixed DG algebras in this section.

Definition 2.1. A morphism f : M Ñ N of DG A-modules is called null homotopic
if there exists a morphism r : M Ñ N of the underlying graded A-modules which is
homogenous of degree ´1 s. t. f “ dNr ` rdM holds. In that case, one also writes f » 0.

Definition 2.2. The homotopy category KA is given by:

• obpKAq is the class of DG A-modules,

• HomKApM, Nq “ HomDG-Mod´ApM, Nqätf P HomDG-Mod´ApM, Nq | f » 0u for
all DG A-modules M and N .

Remark 2.3. For a DG A-module M and a morphism f : A Ñ M of DG modules,
f » 0 iff fp1q P B0M , so the map

HomKApA, Mq Ñ H0M, f ÞÑ fp1q

is an isomorphism.

Remark 2.4. In fact, for all DG A-modules M and N , B0pHomApM, Nqq consists of
morphisms f : M Ñ N of DG modules which are null homotopic, hence we have an
isomorphism

HomKApM, Nq – H0
pHomApM, Nqq.

We now want to equip KA with the structure of a triangulated category by extending
the required constructions from chain complexes to DG modules.

Definition 2.5. The suspension functor (or shift functor) p‚qr1s on DG-Mod ´ A is
defined by setting

• M r1sp “ Mp`1,

• dMr1s “ ´dM ,
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• m ¨Mr1s a “ m ¨M a

for a DG A-module M , m P M and a P A.
The suspension functor descends to KA and is denoted likewise as a functor on KA.

Definition 2.6. For a morphism f : M Ñ N of DG A-modules, its (mapping) cone Cf
is defined by setting

• Cf “ M r1s ‘ N as graded modules,

• dCf “

ˆ

dMr1s 0
f dM

˙

.

Note that Cf comes equipped with a canonical injection if : N Ñ Cf and a canonical
projection pf : Cf Ñ M r1s (which are morphisms of DG A-algebras).

Theorem 2.7. KA has a structure of a triangulated category s. t.

• The automorphism Σ is given by p‚qr1s.

• (Distinguished) triangles are given by triangles isomorphic to

M
f
ÝÑ N

if
ÝÑ Cf

´pf
ÝÝÑ M r1s.

Proof Idea. One endows DG-Mod ´ A with the structure of an exact category given
by the sequences which split as sequences of graded A-modules and checks that this
yields a Frobenius category whose stable category is equivalent to KA (in a manner
that “preserves shifts and triangles”).

Example 2.8. In the setting of Example 1.2, the homotopy category of the DG algebra
associated to an ordinary algebra coincides with the homotopy category of the ordinary
algebra.

Definition 2.9. A morphism f : M Ñ N of DG A-modules is called a quasi-isomorphism
if the induces morphism H˚f : H˚M Ñ H˚N on homology is an isomorphism.

Let S denote the class of quasi-isomorphisms.

Definition 2.10. The derived category DA of A is the localization pKAqrS´1s.

Remark 2.11. DA has a unique structure of a triangulated category such that the
localization functor Q : KA Ñ DA is triangulated.

As with usual algebras, replacing DG modules with “ones that have better homotopical
behavior” comes in handy while working with (or even defining) derived categories.

Definition 2.12. A DG module M is called acyclic if H iM – 0 for all i P Z.

Definition 2.13. A DG module K is called homotopically projective (resp. homotopi-
cally injective if HomKApK, Nq – 0 (resp. HomKApN, Kq – 0) for all acyclic DG modules
N .
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Example 2.14. A is a homotopically projective DG A-module.

Definition 2.15. Let KpA (resp. Ki) be the full subcategory of homotopically projective
(resp. homotopically injective) objects in KA.

Now we will state, without proving, some important facts about homotopy categories
and derived categories (of DG algebras). Some previous talks dealt with analogous
statements in the case of ordinary algebras, and the proofs in the DG setting are also
analogous.

Let X be a DG A-B-bimodule for the rest of this section.

Proposition 2.16. There is an “h-projective resolution” functor p : KA Ñ KpA such
that for every DG A-module M , there is a triangle (which is, in KA, unique up to
isomorphisms extending idM)

pM Ñ M Ñ N  ,

where N is acyclic.

Remark 2.17. There is a “dual version” of Proposition 2.16 for homotopically injective
DG algebras, i. e. there is an “h-injective resolution” functor i : KA Ñ KiA.

Remark 2.18. Here are some facts about p resp. i.

• Since p (resp. i) vanishes on acyclic complexes, it descends to a functor DA Ñ KpA
(resp. DA Ñ KiA).

• The localization functor Q : KA Ñ DA restricts to an equivalence KpA Ñ DA
(resp. KiA Ñ DA) with left adjoint quasi-inverse p (resp. right adjoint quasi-
inverse i).

• In particular, one obtains natural isomorphisms

HomDAp‚, Qp‹qq
–
ÝÑ HomKAppp‚q, ‹q

resp.
HomKAp‚, ip‹qq

–
ÝÑ HomDApQp‚q, ‹q .

Corollary 2.19. For every DG A-module M we have isomorphisms

HomDApA, Mq
–
ÝÑ HomKAppA, Mq

–
ÝÑ HomKApA, Mq

–
ÝÑ H0M.

Definition 2.20. Given a functor F : KA Ñ C, its total left derived functor LF is
defined as F ˝ p : DA Ñ C. Similarly, the total right derived functor RF of F is defined
as F ˝ i.

Notation 2.21. We also write p‚q bL
A X instead of Lpp‚q bA Xq.

Remark 2.22. The functors Lpp‚q bA Xq and RHomBpX, ‹q are triangulated.
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Remark 2.23. There is an adjunction

p‚q b
L
A X : DA Õ DB : RHomBpX, ‹q .

Remark 2.24. Given DG A-modules M and N , we have an isomorphism

Hn
pRHomApM, Nqq – HomDApM, N rnsq .

Now let us recall perfect complexes.

Definition 2.25. The subcategory per A of perfect DG A-modules is the smallest full
triangulated subcategory of DA containing A and closed under direct summands.

Remark 2.26. In the setting of Example 1.2, perfect DG modules over the DG algebra
associated to an ordinary algebra coincide with perfect complexes over that algebra.

Remark 2.27. A DG A-module K is in per A iff the functor HomDApK, ‚q preserves
infinite direct sums.

The following principle is very helpful while showing that certain triangulated functors
are equivalences.

Proposition 2.28 (infinite dévissage). A full triangulated subcategory of DA is equal
to DA iff it contains A (seen as a DG module over itself) and is closed under infinite
direct sums.

3 Derived Equivalences
A and B continue to be fixed DG algebras in this section. Furthermore, let X be a

DG A-B-bimodule throughout the section.
We start with a criterion for deciding when derived tensor products induce derived

equivalences.

Proposition 3.1. The following are equivalent:

i) p‚q bL
A X : DA Ñ DB is an equivalence.

ii) p‚q bL
A X induces an equivalence per A Ñ per B.

iii) The object T :“ A bL
A X satisfies the following:

a) The map
HnA – HomDApA, Arnsq Ñ HomDBpT, T rnsq

is an isomorphism for all n P Z.
b) T is in per B.
c) The smallest full triangulated subcategory of DB containing T and closed under

forming direct summands is equal to per B.
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Such equivalences of derived categories are often called standard derived equivalences.

Proof. “piq ñ piiq”: By the intrinsic characterization of per B (Remark 2.27), every
derived equivalence restricts to an equivalence of subcategories of perfect DG modules.

“piiq ñ piiiq”: We see that

a) follows by the fact that p‚q bL
A X fully faithful (on DA),

b) by the fact that it takes perfect complexes to perfect complexes,

c) by the fact that per B is the essential image of per A under p‚q bL
A X.

“piiiq ñ piq”: We start by showing that p‚qbL
A X is fully faithful. For this it is enough

to show that the adjunction unit

ϕM : M Ñ RHomB

`

X, M b
L
A X

˘

is an isomorphism in DA for all DG A-modules M .
Note that T “ A bL

A X “ pA bA X “ A bA X is isomorphic to X seen as a DG
B-module. This means in particular that the functor RHomBpX, ‹q is not only tri-
angulated, but also preserves direct sums since T and hence X is perfect as a DG
B-module. Further, also p‚q bL

A X is triangulated and preserves direct sums. Hence we
can use infinite dévissage (Proposition 2.28) on DA to reduce the claim to the statement
that

ϕA : A Ñ RHomB

`

X, A b
L
A X

˘

“ RHomBpX, T q – RHomBpT, T q

is an isomorphism.
Under this identification we see that

HnϕA : HnA Ñ Hn
pRHomBpX, T qq – Hn

pRHomBpT, T qq

is the isomorphism in paq, so ϕM is an isomorphism in DA since it is a quasi-isomorphism
on the level of DG modules.

In order to see that p‚q bL
A X is essentially surjective, we observe that its essential

image is closed under direct summands since it is fully faithful and direct summands
correspond to idempotent morphisms. Combining this with the fact that p‚q bL

A X
is triangulated, pcq yields that per B, hence B is in its essential image. Now infinite
dévissage implies that the essential image of p‚q bL

A X is whole DB since it preserves
infinite direct sums.

Definition 3.2. A DG A-module M is called a compact generator of DA if it is in per A
as an object of DA and the smallest full triangualated subcategory of DA containing
M and closed under forming direct summands is equal to per A.

Corollary 3.3. Let f : A Ñ B be a morphism of DG algebras. Then f endows B with
the structure of a DG A-module, so B becomes a DG A-B-bimodule.

Now assume that f is a quasi-isomorphism, i. e. H˚f : H˚A Ñ H˚B is an isomor-
phism. Then AbL

A B – B satisfies all the conditions in the third part of Proposition 3.1,
so p‚q bL

A B : DA Ñ DB is a derived equivalence.
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Corollary 3.4. Let M be a homotopically projective compact generator of DA. Then
EndApMq bL

EndApMq M – M satisfies all the conditions in the third part of Proposi-
tion 3.1, where the condition paq is given by the isomorphism

Hn
pEndApMqq Ñ HomDApM, M rnsq – HomKApM, M rnsq – Hn

pEndApMqq.

Hence p‚q bL
EndApMq M : DpEndApMqq Ñ DA is a derived equivalence.

We need an auxiliary construction before we can move on.

Definition 3.5. For a DG algebra A let the DG subalgebra A´ of A be given by

pA´q
p

“

$

’

&

’

%

Z0A p “ 0
Ap p ă 0
0 p ą 0

.

Now we can prove some classical theorems about derived equivalences.

Theorem 3.6. For (ordinary) algebras R and S the following are equivalent:

i) There is a triangulated equivalence DR Ñ DS.

ii) There is a triangulated equivalence per R Ñ per S.

iii) There is a compact generator T of DS s. t. HomDSpT, T q – R and HomDBpT, T rnsq –

0 for n P Zz t0u

Such complexes as in part piiiq are sometimes called tilting complexes.

Proof. “piq ñ piiq”: Follows from the intrinsic definition of per A and per B.
“piiq ñ piiiq”: Setting T to be the image of R under the equivalence per R Ñ per S

does the job.
“piiiq ñ piq”: Since p preserves endomorphisms in DA and being in per A, we can

without loss of generality assume that T is homotopically projective. Then, by Corol-
lary 3.4, we know that there is a triangulated equivalence DpEndSpT qq

»
ÝÑ DS.

Now, since HnpEndSpT qq – HomDBpT, T rnsq is concentrated in degree 0, the inclusion
pEndSpT qq´ Ñ EndSpT q induces a isomorphisms on homology, so by Corollary 3.3 there
is a triangulated equivalence DppEndSpT qq´q

»
ÝÑ DpEndSpT qq.

Similarly, homology induces a morphism pEndSpT qq´ Ñ R of DG algebras which
is an isomorphism on homology by the assumption and the fact that all differentials
of R are zero. Invoking Corollary 3.3 again, we obtain a triangulated equivalence
DpEndSpT qq´

»
ÝÑ DpRq.

In total, we have a chain of triangulated equivalences

DpRq
»

ÐÝ DppEndSpT qq´q
»
ÝÑ DpEndSpT qq

»
ÝÑ DS.
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Note that this proof doesn’t work for general DG algebras since it involves truncations
and taking homology.

One might ask when triangulated equivalences between derived categories are given
by standard equivalences.

Proposition 3.7. Let R be an algebra, S a flat algebra and F : DR Ñ DS a triangu-
lated equivalence. Then there exists a complex Y of R-S-bimodules s. t. p‚q bL

R Y is a
triangulated equivalence.

Proof. Following “piq ñ piiiq” in Theorem 3.6, we see that T :“ FR is compact generator
of DS s. t. HomDBpT, T q – R and HomDBpT, T rnsq – 0 for n P Zz t0u. We can without
loss of generality assume that T is homotopically projective by possibly replacing it with
a homotopically projective resolution.

We let E :“ pEndSpT qq´ act on T via restriction along its inclusion to EndSpT q. Let
Tp be a homotopically projective resolution of T as a DG pE bk Sq-module. We set

Y :“ R bE Tp,

where E acts on R by the (DG) algebra homomorphism h : E “ pEndSpT qq´ Ñ R
induced by taking homology.

Next, we want to show that

h bE idTp : E bE Tp Ñ R bE Tp

is a quasi-isomorphism of complexes over S, so that we have a chain of quasi-isomorphisms

R b
L
R pR bE Tpq „ R bR pR bE Tpq

„
ÝÑ R bE Tp

„
ÐÝ E bE Tp

„
ÝÑ Tp

„
ÝÑ T.

We will do this by showing that its cone is acyclic. Note that the full subcategory of
DG E-S-bimodules Z for which p‚q bE Z preserves acyclic objects is triangulated and
closed under direct sums. Hence, by inifinite dévissage, the statement that p‚q bE Tp

preserves acyclicity can be reduced to the fact that

p‚q bE pEop
bk Sq – p‚q bE pE bk Sq

preserves acyclicity, which follows from the fact that S is flat.
Now, by Proposition 3.1, p‚q bE Y is derived equivalence.

In fact, an analogous statement can be proven assuming that R (but not necessarily
S) is flat (cf. Theorem 3.13 in [Sch04]).

4 Examples
In this section we deal with some examples with less complete proofs.
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Example 4.1. In previous talks we have seen that two orientations of the same Dynkin
quiver have equivalent derived categories of representation categories. We will now give
an explicit example of such a derived equivalence which is induced by a tilting module
(aka “tilting complex which is concentrated at degree zero”).

We fix a base field K and consider the orientations

Q :“ p1 Ñ 2 Ñ 3q and Q1 :“ p1 Ð 2 Ñ 3q

of A3.
Let T “ P1 ‘ P2 ‘ S2 (where the standard projectives and standard simples are

constructed over KQ). First of all, one can compute that

EndKQpT q –

$

&

%

¨

˝

˚ ˚ ˚

0 ˚ 0
0 0 ˚

˛

‚ | . . .

,

.

-

– KQ1.

Next we consider the projective resolution

0 Ñ KQ
incl
ÝÝÑ P1 ‘ P2 ‘ P2 Ñ S2 Ñ 0

of S2.
This sequence means in particular that the smallest full triangulated subcategory of

DpKQq that contains T and is closed under direct summands also contains KQ since it
must contain P1 ‘ P2 ‘ P2 as a direct summand of T 2 and S2 a direct summand of T .
Moreover, T is quasi-isomorphic to

. . . Ñ 0 Ñ KQ

´

incl
0

¯

ÝÝÝÑ pP1 ‘ P2 ‘ P2q ‘ pP1 ‘ P2q Ñ 0 Ñ . . . ,

which is perfect as bounded complex of projectives. Hence T is a small generator of
DpKQq. Doing some further calculations, one also sees that Extn

pT, T q “ 0 for n ‰ 0.
Hence, by Proposition 3.1,

p‚q b
L
KQ1 T : DpKQ1

q Ñ DpKQq

is a derived equivalence.

Remark 4.2. In the situation of Example 4.1, the functor

p‚q bKQ1 T : Mod ´KQ1
Ñ Mod ´KQ

is not an equivalence of categories (i. e. not a Morita equivalence in the classical sense).
Indeed, Morita equivalences preserve projective objects. Now KQ1 is a projective

KQ-module, but T is not a projective KQ-module.

Using the techniques we develeped, we can give a description of stable categories of
certain Frobenius categories as derived categories of certain DG algebras.
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Theorem 4.3. Let A be a (k-linear) Frobenius category which has infinite direct sums
and whose stable category admits a compact generator X. Then there is a DG algebra
A and a triangulated equivalence DA Ñ A.

Proof. We will first replace A by a category in which endomorphisms can be described
via DG algebras: Let Ã be the category of projective-injective “resolution complexes”

P “ p. . . Ñ P n dn

ÝÑ P n`1
Ñ . . .q,

i. e. each object of Ã is obtained from an object Z of Aby “gluing” a projective resolution

. . . Ñ Q´2 d´2
ÝÝÑ Q´1 ε

ÝÑ Z

to an injective resolution
Z

η
ÝÑ I1 d1

ÝÑ I2
Ñ . . .

and setting d0 “ η ˝ ε.
If we equip Ã with the structure of an exact category via componentwise split se-

quences, the functor sending a resolution to its “underlying object in A” induces a
triangulated equivalence Ã

»
ÝÑ A.

Now let X̃ P Ã be such a resolution of X and define A :“ EndA

`

X̃
˘

. Consider the
functor HomA

`

X̃, ‚
˘

: ÃÑ DA, which vanishes on projectives in Ãand hence descends
to a triangulated functor F : ÃÑ DA.

Further, F preserves with direct sums since there is a natural isomorphism

Hn
pHomA

`

X̃, ‚
˘

q
–
ÝÑ HomẼ

`

X̃, p‚qrns
˘

for all n and the latter functor preserves direct sums as X̃ is compact.
Now, similar to the last implication of Proposition 3.1, one can use dévissage argu-

ments on Ẽ to show that F is fully faithful and on DA to show that F essentially
surjective. Hence, in total, we obtain a chain of triangulated equivalences

E
»

ÐÝ Ẽ
»
ÝÑ DA.
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