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Conventions
The labeling of statements refers to the numbering in Bousfield’s paper.

Warning
What the category Sp of spectra is is intentionally kept vague.
Depending on whether Sp is the stable homotopy category, a point-set model or the
8-category of spectra, the statements may mean slightly different things and may
be stronger or weaker.
Bousfield uses the stable homotopy category and CW-spectra.

Assumption
The smash product ^ : Sp ˆ Sp Ñ Sp is assumed to be “homotopically correct”, in
particular exact in both variables.

We fix a spectrum E for the rest of the talk.
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E -equivalences

Definition
A map f : X Ñ Y of spectra is called an E -equivalence if E˚f : E˚X Ñ E˚Y is an
isomorphism.

We would like to have have a category SpE equipped with a “localization functor”
p´qE : Sp Ñ SpE s.t.

f : X Ñ Y is an E -equivalence ðñ fE : XE Ñ YE is an equivalence.

Spoiler
In the end, we will be able to realize the target of the localization functor as the full
subcategory of Sp consisting of “E -local” spectra.
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Why should we care about E -equivalences? (I)

Example (Proposition 2.9)
Each spectrum X sits in a homotopy pullback square

X
ś

p prime XS{p

XSQ

´

ś

p prime XS{p

¯

SQ

,

a.k.a. an “arithmetic square”.
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Why should we care about E -equivalences? (II)

Example (a consequence of Theorem 6.6)
Let E be a connective ring spectrum such that π0E – Z{n for some n ě 2.
Let Y be a connective spectrum with finitely generated homotopy groups.
Then the E -based Adams spectral sequence for Y converges to π˚YS{n.
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E -acyclicity and E -locality

Definition
A spectrum X is called

‚ E -acyclic if E˚X – 0, i.e. E ^ X » 0.
‚ E -local if for each E -equivalence f : A Ñ B, f ˚ : rB,X s‚ Ñ rA,X s‚ is a

bijection.

Lemma
A map f : X Ñ Y is an E-equivalence if and only if its homotopy (co)fiber is
E-acyclic.

Corollary
A spectrum X is E-local iff for every E-acyclic spectrum A, rA,X s‚ – 0.
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A class of E -local spectra

Lemma (Lemma 1.3)
If E is a ring spectrum (up to homotopy), then all E -module spectra are E-local.

Proof.
Let A be an E -acyclic spectrum, f : A Ñ X .
Then, up to homotopy, f can be factored as

A 1E ^A
ÝÝÝÑ E ^ A E^f

ÝÝÝÑ E ^ X actX
ÝÝÑ X .

Since A is E -acyclic, E ^ A » 0.
Thus f factors through 0, so f „ 0.
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E -equivalences between E -local spectra

Fact (Lemma 1.2, “E -Whitehead theorem”)
Let f : X Ñ Y be an E-equivalence between E-local spectra.
Then f is an equivalence.
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Closure properties of E -local spectra

Fact (Lemmas 1.4-1.8)
The subcategory SpE of E-local spectra is closed under

‚ homotopy (co)fibers,
‚ homotopy limits,
‚ extensions,
‚ retracts.

Remark
The dual statements hold for E -acyclic spectra.

Warning
In general, SpE is not closed under smash products.
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The existence theorem

Theorem (Theorem 1.1)
There are functors

‚ E p´q : Sp Ñ Sp (E -acyclization) which lands in E-acyclic spectra,
‚ p´qE : Sp Ñ Sp (E -localization) which lands in E-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

E X θX
ÝÑ X ηX

ÝÑ XE .
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such that for each spectrum X there exists a natural homotopy (co)fiber sequence

E X θX
ÝÑ X ηX

ÝÑ XE .
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ηE : X Ñ XE is an E -equivalence.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
ηX : X Ñ XE is an E-equivalence.

Proof.
Smashing the localization sequence with E yields a homotopy (co)fiber sequence

0 » E ^ E X E^θX
ÝÝÝÑ E ^ X E^ηX

ÝÝÝÑ E ^ XE ,

so E˚ηX “ π˚pE ^ ηX q is an equivalence.
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Idempotency of the localization functor

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
The functor p´qE : Sp Ñ Sp is idempotent (up to homotopy).

Proof.
ηXE : XE Ñ pXE qE is an E -equivalence between E -local spectra.
So it’s an equivalence.
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p´qE : Sp Ñ SpE is left adjoint to SpE ãÑ Sp.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
ηX : X Ñ XE is (up to homotopy) initial among maps from X to an E-local
spectrum.

Proof.
If Y is E -local, then η˚

X : rX ,Y s – rXE ,Y s since ηE is an E -equivalence.

Corollary
E-localization is left adjoint to the inclusion SpE ãÑ Sp of E-local spectra.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

p´qE : Sp Ñ SpE is left adjoint to SpE ãÑ Sp.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
ηX : X Ñ XE is (up to homotopy) initial among maps from X to an E-local
spectrum.

Proof.
If Y is E -local, then η˚

X : rX ,Y s – rXE ,Y s since ηE is an E -equivalence.

Corollary
E-localization is left adjoint to the inclusion SpE ãÑ Sp of E-local spectra.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

p´qE : Sp Ñ SpE is left adjoint to SpE ãÑ Sp.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
ηX : X Ñ XE is (up to homotopy) initial among maps from X to an E-local
spectrum.

Proof.
If Y is E -local, then η˚

X : rX ,Y s – rXE ,Y s since ηE is an E -equivalence.

Corollary
E-localization is left adjoint to the inclusion SpE ãÑ Sp of E-local spectra.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

E p´q : Sp Ñ ESp is right adjoint to ESp ãÑ Sp.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
θX : E X Ñ X is (up to homotopy) terminal among maps from an E-acyclic spectrum
to X.

Corollary
E-acyclization is right adjoint to the inclusion SpE ãÑ Sp of E-acyclic spectra.
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E p´q : Sp Ñ ESp is right adjoint to ESp ãÑ Sp.

Have: hocofiber sequence E X θX
ÝÑ X ηX

ÝÑ XE s.t. E X is E -acyclic and XE is E -local.

Corollary
θX : E X Ñ X is (up to homotopy) terminal among maps from an E-acyclic spectrum
to X.

Corollary
E-acyclization is right adjoint to the inclusion SpE ãÑ Sp of E-acyclic spectra.
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Exactness of acyclization and localization functors

Corollary
E-acyclization and E-localization are exact functors.
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How to construct localizations?

Recipe for constructing XE .
1 Construct a spectrum aE such that rA,Y s‚ – 0 for all E -acyclic A iff

raE ,Y s‚ – 0.
2 “Kill” all the maps from aE to X .

We’ll sketch these constructions for CW-spectra (i.e. sequential spectra pXnqnPN s.t.
every level Xn is a CW-complex and the structure maps ΣXn Ñ ΣXn`1 are
inclusions of subcomplexes).
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“The” acyclic spectrum

Fix an infinite cardinal σ that is at least equal to | ‘nPZ πnE |.

Definition
Let pKiqiPI a system of representatives for the equivalence classes of E -acyclic
spectra with at most σ cells.
Set

aE :“
ł

iPI
Ki .
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aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (I)

Let Y be a spectrum s.t. raE ,Y s‚ – 0.
We want to show that rA,Y s‚ – 0 for every E -acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

0 “ A0 Ă A1 Ă . . . Ă Aα “ A

by E -acyclic CW-subspectra s.t.
1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.

‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.



Localization
of spectra

Aras Ergus

Localizations
and
acyclizations
Motivation

Formal properties

Existence

Construction

The Bousfield lattice

Localizations
w.r.t. Moore
spectra

More cool
results

aE “generates” all E -acyclic spectra (II)

For a moment, assume that we do have filtration 0 “ A0 Ă A1 Ă . . . Ă Aα “ A by
E -acyclic CW-subspectra s.t.

1 Aγ`1 “ Aγ Y Wγ for a subspectrum Wγ Ă A s.t.
‚ Wγ Ć Aγ ,
‚ Wγ has at most σ cells,
‚ E˚pAγ`1{Aγq – E˚pWγ{pWγ X Aγqq – 0.

2 Aλ “
Ť

iăλ Ai for limit ordinals λ.
Note that the successor step guarantees that the subquotients Aγ`1{Aγ are
E -acyclic spectra with at most σ cells, so they are all “summands” of aE “

Ž

i Ki .
Thus, by (transfinite) induction along this filtration, we can show that rA,Y s‚ – 0 if
raE ,Y s‚ – 0.
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How to do the successor step?

Lemma
Let A be a CW-spectrum.
Let B Ă A a proper closed subspectrum with E˚pA{Bq – 0.
Let e be a cell of A that is not in B.
Then there exists a CW-subspectrum W Ă A such that:

‚ W contains e.
‚ W has at most σ cells.
‚ E˚pW {pW X Bqq – 0.
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Proof of the lemma needed for the successor step

Proof.
We will construct a sequence pWnqnPN of CW-subspectra such that

‚ each Wn contains e,
‚ each Wn has at most σ cells,
‚ E˚pWn{pWn X Bqq Ñ E˚pWn`1{pWn`1 X Bqq is zero for all n,

and set W :“
Ť

n Wn.
Let W0 be a CW-subspectrum of A with at most σ cells that contains e.
Given Wn, consider x P E˚pWn{pWn X Bqq. As E˚pA{Bq – 0, there exists a finite
CW-subspectrum Fx Ă X s.t. x maps to 0 in E˚ppWn Y Fx q{ppWn Y Fx q X Bqq.
Let Wn`1 :“ Wn Y

Ť

x Fx , which has at most σ cells because there are at most σ
possibilities for x .
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Recap of the construction of XE

We have constructed a spectrum aE such that raE ,Y s‚ – 0 iff rA,Y s‚ – 0 for every
E -acyclic spectrum A.

Now we want to construct the E -localization XE of X by “coning off” all maps from
aE to X .
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The small object argument

Given a (CW-)spectrum X , construct XE by (transfinite) induction as follows:
‚ Let X0 :“ X .
‚ Given Xα, define Xα`1 to be the (homotopy) cofiber of

ł

nPZ

ł

rf sPraE ,Xαsn

S i
Ž

n
Ž

rf s f
ÝÝÝÝÝÝÑ Xα.

‚ At limit ordinals λ set Xλ :“ hocolimiăλ Xi .
Pick a cardinal κ larger than the number of cells in aE . Set XE :“ Xκ.
This guarantees that every map ΣiaE Ñ XE factors through Xi for some i ă κ, so is
trivial because it gets coned off at the next stage.
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Bousfield classes

Let F be another spectrum.

Definition
E and F are called Bousfield equivalent if one of the following equivalent
conditions holds:

i A spectrum is E -acyclic iff it is F -acyclic.
ii A map between spectra is an E˚-equivalence iff it is an F˚-equivalence.

The equivalence class of E w.r.t. this relation will be called the Bousfield class of
E and denoted by xEy.
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The set of Bousfield classes as a lattice

Fact
The set (!) of Bousfield classes of spectra is a lattice with

‚ join induced by wedge of spectra,
‚ meet induced by smash product of spectra.

In particular, x0y is the minimal element and xSy is the maximal element.

Definition
We define a partial order on the set of Bousfield clasess by declaring xEy ď xF y if
every F -acyclic spectrum is E -acyclic.

Remark
This order agrees with the one coming from the lattice structure.
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Acyclicity types of abelian groups

Definition
Two abelian groups G1 and G2 have the same type of acyclicity if

‚ G1 is a torsion group iff G2 is, and
‚ for each prime p, G1 is uniquely p-divisible iff G2 is.

Fact (Proposition 2.3)
For abelian groups G1 and G2, the following are equivalent:

i G1 and G2 have the same type of acyclicity.
ii xSG1y “ xSG2y.
iii SG1 and SG2 yield equivalent localization functors on Sp.
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An explicit description of acyclicity types

Remark
Every acyclicity class is represented by one of the following:

‚
ś

pPJ Z{p for a set J of primes,
‚ ZpJq for a set J of primes.
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Complements of acyclicity types (I)

Definition
The complement of an acyclicity type (or by abuse of terminology, an abelian
group) is defined as follows:

‚ If
ś

pPJ Z{p is in the class for a set J of primes, then the complement contains
ZpJq.

‚ If ZpJq is in the class for a set J of primes, then the complement contains
ś

pPJ Z{p.

Example
(The acyclicity classes of) Q and

ś

p prime Z{p are complements of each other.
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Complements of acyclicity types (II)

Remark
Let G be an abelian group and G 1 an abelian group in the complement of its
acyclicity type.
Then:

‚ G ‘ G 1 and Z have the same type of acyclicity.
‚ xSG _ SG 1y “ xSy.
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The (generalized) arithmetic square

Theorem (Proposition 2.9)
Each spectrum X sits in a homotopy pullback square

XE
ś

p prime XE^S{p

XE^SQ

´

ś

p prime XE^S{p

¯

E^SQ

,

where all the maps are induced by corresponding localizations.
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Proof of the arithmetic square theorem
Proof sketch.

XE

P
ś

p prime XE^S{p

XE^SQ

´

ś

p prime XE^S{p

¯

E^SQ

pE ^ SQq-eq.

pE ^ S{pq-eq. f.a. p

pE ^ SQq-eq.

pE ^ S{pq-eq. f.a. p{
,

The homotopy pullback P is E -local as a limit of E -local spectra, so it’s enough to
show that XE Ñ P is an E -equivalence.
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Localizations of connective spectra w.r.t.
connective spectra

Theorem (Theorem 3.1)
Assume that E is connective.
Let X be a connective spectrum.
Then XE » XSp‘nPZπnEq.

Corollary
Let G be an abelian group, X a connective spectrum.
Then XHG » XSG .
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A “telescope theorem”

Theorem (Proposition 4.2)
Let p be a prime number.
Let Ap : Σ

2pp´1qS{p Ñ S{p for p odd resp. Ap : Σ
8S{2 Ñ S{2 for p “ 2 be the

Adams map.
Then the natural map

S{p Ñ hocolimpS{p Σ´ deg Ap Ap
ÝÝÝÝÝÝÝÑ Σ´ degApS{p Σ´2 deg Ap Ap

ÝÝÝÝÝÝÝÑ . . .q

is a KU-localization.
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