Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localization: w.r.t. Moore spectra

More cool results The localization of spectra with respect to homology by A. K. Bousfield

Aras Ergus

École polytechnique fédérale de Lausanne (EPFL)

eCHT Kan seminar, December 3, 2019

This work is licensed under a Creative Commons "Attribution-ShareAlike 4.0 International" license.

Localization of spectra

Aras Ergus

Localizations and Acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Localization of spectra

Aras Ergus

Localizations and Acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Localization of spectra

Aras Ergus

Localizations and Acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Varning

What the category Sp of spectra is is intentionally kept vague. Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product \land : Sp \times Sp \rightarrow Sp is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Reweifiel Latti

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague.

Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product \land : Sp \times Sp \rightarrow Sp is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague. Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product \land : Sp \times Sp \rightarrow Sp is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague. Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product \land : Sp \times Sp \rightarrow Sp is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague. Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product $\wedge\colon Sp\times Sp\to Sp$ is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The labeling of statements refers to the numbering in Bousfield's paper.

Warning

What the category Sp of spectra is is intentionally kept vague. Depending on whether Sp is the stable homotopy category, a point-set model or the ∞ -category of spectra, the statements may mean slightly different things and may be stronger or weaker.

Bousfield uses the stable homotopy category and CW-spectra.

Assumption

The smash product $\wedge\colon Sp\times Sp\to Sp$ is assumed to be "homotopically correct", in particular exact in both variables.

We fix a spectrum E for the rest of the talk.

Localization of spectra

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations

Motivation Formal properties Existence Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Localization of spectra

Aras Ergus

Localization and acyclization

- Motivation Formal properties Existence Construction The Bousfield lattice
- Localizations w.r.t. Moore spectra
- More cool results

Localizations and acyclizations Motivation

- Formal properties
- Construction
- The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Aras Ergus

Localization and acyclizations

Motivation Formal properties Existence Construction The Bousfield latti

Localization: w.r.t. Moore spectra

More cool results

E-equivalences

Definition A map $f: X \to Y$ of spectra is called an *E*-equivalence if $E_*f: E_*X \to E_*Y$ is an isomorphism.

We would like to have have a category Sp_E equipped with a "localization functor" $(-)_E \colon Sp \to Sp_E$ s.t.

 $f: X \to Y$ is an *E*-equivalence $\iff f_E: X_E \to Y_E$ is an equivalence.

Spoiler

In the end, we will be able to realize the target of the localization functor as the full subcategory of Sp consisting of "*E*-local" spectra.

E-equivalences

Definition

Motivation

Localization of spectra

Aras Ergus

A map $f: X \to Y$ of spectra is called an *E*-equivalence if $E_*f: E_*X \to E_*Y$ is an isomorphism.

We would like to have have a category Sp_{F} equipped with a "localization functor" $(-)_F \colon \mathsf{Sp} \to \mathsf{Sp}_F \text{ s.t.}$

E-equivalences

Definition

A map $f: X \to Y$ of spectra is called an *E*-equivalence if $E_*f: E_*X \to E_*Y$ is an isomorphism.

Localizations w.r.t. Moore spectra

Motivation

Localization of spectra

Aras Ergus

More cool results We would like to have have a category Sp_E equipped with a "localization functor" $(-)_E \colon Sp \to Sp_E$ s.t.

 $f: X \to Y$ is an *E*-equivalence $\iff f_E: X_E \to Y_E$ is an equivalence.

Spoiler

In the end, we will be able to realize the target of the localization functor as the full subcategory of Sp consisting of "*E*-local" spectra.

E-equivalences

Definition

A map $f: X \to Y$ of spectra is called an *E*-equivalence if $E_*f: E_*X \to E_*Y$ is an isomorphism.

Localizations w.r.t. Moore spectra

Motivation

Localization of spectra

Aras Ergus

More cool results We would like to have have a category Sp_E equipped with a "localization functor" $(-)_E\colon\mathsf{Sp}\to\mathsf{Sp}_E$ s.t.

 $f: X \to Y$ is an *E*-equivalence $\iff f_E: X_E \to Y_E$ is an equivalence.

Spoiler

In the end, we will be able to realize the target of the localization functor as the full subcategory of Sp consisting of "E-local" spectra.

Aras Ergus

Localization and acyclization

Motivation Formal properties Existence Construction The Bousfield lattice

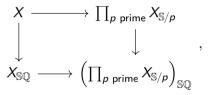
Localization w.r.t. Moore spectra

More cool results

Why should we care about E-equivalences? (I)

Example (Proposition 2.9)

Each spectrum X sits in a homotopy pullback square



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

a.k.a. an "arithmetic square".

Aras Ergus

Localizatior and acyclization

Motivation

Formal properties Existence Construction The Bousfield latti

Localization: w.r.t. Moore spectra

More cool results

Why should we care about E-equivalences? (II)

Example (a consequence of Theorem 6.6)

Let *E* be a connective ring spectrum such that $\pi_0 E \cong \mathbb{Z}/n$ for some $n \ge 2$.

Let Y be a connective spectrum with finitely generated homotopy groups. Then the *E*-based Adams spectral sequence for Y converges to $\pi_* Y_{S/n}$.

Aras Ergus

Localizatior and acyclization

Motivation

Formal properties Existence Construction The Bousfield latt

Localization w.r.t. Moore spectra

More cool results

Why should we care about E-equivalences? (II)

Example (a consequence of Theorem 6.6)

Let *E* be a connective ring spectrum such that $\pi_0 E \cong \mathbb{Z}/n$ for some $n \ge 2$. Let *Y* be a connective spectrum with finitely generated homotopy groups. Then the *E*-based Adams spectral sequence for *Y* converges to $\pi_* Y_{S/n}$.

Aras Ergus

Localizatior and acyclization

Motivation

Formal properties Existence Construction The Bousfield latti

Localization w.r.t. Moore spectra

More cool results

Why should we care about E-equivalences? (II)

Example (a consequence of Theorem 6.6)

Let *E* be a connective ring spectrum such that $\pi_0 E \cong \mathbb{Z}/n$ for some $n \ge 2$. Let *Y* be a connective spectrum with finitely generated homotopy groups. Then the *E*-based Adams spectral sequence for *Y* converges to $\pi_* Y_{\mathbb{S}/n}$.

Localization of spectra

Aras Ergus

Acyclizations acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations Motivation

Formal properties

Existence Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

・ロト ・日・・日・・日・・ のくの

Aras Ergus

Localizations and acyclizations Motivation Formal properties

- Existence Construction
- Localizations w.r.t. Moore spectra

More cool results

Definition A spectrum X is called

- *E*-acyclic if $E_*X \cong 0$, i.e. $E \wedge X \simeq 0$.
- E-local if for each E-equivalence f : A → B, f*: [B,X], → [A,X], is a bijection.

E-acyclicity and *E*-locality

Lemma

A map $f: X \to Y$ is an E-equivalence if and only if its homotopy (co)fiber is E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, $[A, X]_{\bullet} \cong 0$.

・ロト・雪・・雪・・雪・・白・

Aras Ergus

Localizations and acyclizations Motivation Formal properties

- Existence Construction
- Localizations w.r.t. Moore spectra

More cool results

Definition

A spectrum X is called

- *E*-acyclic if $E_*X \cong 0$, i.e. $E \wedge X \simeq 0$.
- E-local if for each E-equivalence f : A → B, f*: [B,X], → [A,X], is a bijection.

E-acyclicity and *E*-locality

Lemma

A map $f: X \to Y$ is an E-equivalence if and only if its homotopy (co)fiber is E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, $[A, X]_{\bullet} \cong 0$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties

- Existence Construction
- The Bousfield lattic
- Localizations w.r.t. Moore spectra

More cool results

Definition

A spectrum X is called

- *E*-acyclic if $E_*X \cong 0$, i.e. $E \wedge X \simeq 0$.
- E-local if for each E-equivalence f: A → B, f*: [B,X], → [A,X], is a bijection.

E-acyclicity and *E*-locality

Lemma

A map $f: X \to Y$ is an E-equivalence if and only if its homotopy (co)fiber is E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, $[A, X]_{\bullet} \cong 0$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties

- Construction
- The Bousfield lattic
- Localizations w.r.t. Moore spectra

More cool results

Definition

A spectrum X is called

- *E*-acyclic if $E_*X \cong 0$, i.e. $E \land X \simeq 0$.
- E-local if for each E-equivalence f: A → B, f*: [B,X], → [A,X], is a bijection.

E-acyclicity and *E*-locality

Lemma

A map $f: X \to Y$ is an E-equivalence if and only if its homotopy (co)fiber is E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, $[A, X]_{\bullet} \cong 0$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties

- Construction
- Localizations w.r.t. Moore spectra

More cool results

Definition

A spectrum X is called

- *E*-acyclic if $E_*X \cong 0$, i.e. $E \wedge X \simeq 0$.
- E-local if for each E-equivalence f: A → B, f*: [B,X], → [A,X], is a bijection.

E-acyclicity and *E*-locality

Lemma

A map $f: X \to Y$ is an E-equivalence if and only if its homotopy (co)fiber is E-acyclic.

Corollary

A spectrum X is E-local iff for every E-acyclic spectrum A, $[A, X]_{\bullet} \cong 0$.

Aras Ergus

Acyclizations Acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localization w.r.t. Moore spectra

More cool results

A class of *E*-local spectra

Lemma (Lemma 1.3)

If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

roof.

Let A be an E-acyclic spectrum, $f: A \rightarrow X$. Then up to homotopy f can be factored as

$$A \xrightarrow{1_E \wedge A} E \wedge A \xrightarrow{E \wedge f} E \wedge X \xrightarrow{\operatorname{act}_X} X.$$

Since A is E-acyclic, $E \wedge A \simeq 0$. Thus f factors through 0, so $f \sim 0$.

・ロト・西ト・西ト・日・ 白・

Aras Ergus

Acyclizations Acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

A class of *E*-local spectra

Lemma (Lemma 1.3)

Proof.

If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

Let A be an E-acyclic spectrum, $f: A \rightarrow X$.

Then, up to homotopy, f can be factored as

$$A \xrightarrow{1_E \wedge A} E \wedge A \xrightarrow{E \wedge f} E \wedge X \xrightarrow{\operatorname{act}_X} X.$$

Since A is E-acyclic, $E \wedge A \simeq 0$. Thus f factors through 0, so $f \sim 0$.

・ロト・西ト・西ト・日・ 白・

Aras Ergus

Acyclizations acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

A class of *E*-local spectra

Lemma (Lemma 1.3)

If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

Proof.

Let A be an E-acyclic spectrum, $f: A \rightarrow X$. Then, up to homotopy, f can be factored as

$$A \xrightarrow{1_E \wedge A} E \wedge A \xrightarrow{E \wedge f} E \wedge X \xrightarrow{\operatorname{act}_X} X.$$

Since A is E-acyclic, $E \wedge A \simeq 0$. Thus f factors through 0, so $f \sim 0$.

・ロト・西ト・山田・山田・

Aras Ergus

Acyclizations acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

A class of *E*-local spectra

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Lemma (Lemma 1.3)

If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

Proof.

Let A be an E-acyclic spectrum, $f: A \rightarrow X$. Then, up to homotopy, f can be factored as

$$A \xrightarrow{1_E \wedge A} E \wedge A \xrightarrow{E \wedge f} E \wedge X \xrightarrow{\operatorname{act}_X} X.$$

Since A is E-acyclic, $E \wedge A \simeq 0$.

Thus f factors through 0, so $f \sim 0$.

Aras Ergus

Acyclizations acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

A class of *E*-local spectra

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Lemma (Lemma 1.3)

If E is a ring spectrum (up to homotopy), then all E-module spectra are E-local.

Proof.

Let A be an E-acyclic spectrum, $f: A \rightarrow X$. Then, up to homotopy, f can be factored as

$$A \xrightarrow{1_E \wedge A} E \wedge A \xrightarrow{E \wedge f} E \wedge X \xrightarrow{\operatorname{act}_X} X.$$

Since A is E-acyclic, $E \wedge A \simeq 0$. Thus f factors through 0, so $f \sim 0$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localization w.r.t. Moore spectra

More cool results

E-equivalences between E-local spectra

Fact (Lemma 1.2, "*E*-Whitehead theorem")

Let $f: X \rightarrow Y$ be an E-equivalence between E-local spectra. Then f is an equivalence.

Aras Ergus

Accurations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for E-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

・ロト・日本・日本・日本・日本・日本

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for *E*-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

・ロト・日本・日本・日本・日本・日本

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for E-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products

Closure properties of E-local spectra

・ロト・日本・日本・日本・日本・日本

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for *E*-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for E-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

・ロト・日本・日本・日本・日本・日本

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for *E*-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Fact (Lemmas 1.4-1.8)

The subcategory Sp_E of E-local spectra is closed under

- homotopy (co)fibers,
- homotopy limits,
- extensions,
- retracts.

Remark

The dual statements hold for *E*-acyclic spectra.

Warning

In general, Sp_E is not closed under smash products.

Closure properties of E-local spectra

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations

Motivation Formal properties

Existence

Construction The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Outline

Aras Ergus

Acyclizations Acyclizations Motivation Formal properties Existence Construction

The Bousfield latt

Localization w.r.t. Moore spectra

More cool results

Theorem (Theorem 1.1) There are functors

• $_{E}(-)$: Sp \rightarrow Sp (*E*-acyclization) which lands in *E*-acyclic spectra,

• $(-)_E \colon Sp \to Sp$ (*E*-localization) which lands in *E*-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

$$_EX \xrightarrow{\theta_X} X \xrightarrow{\eta_X} X_E.$$

・ロト・日本・山田・山田・山口・

The existence theorem

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (Theorem 1.1)

There are functors

- $_{E}(-)$: Sp \rightarrow Sp (*E*-acyclization) which lands in *E*-acyclic spectra,
- $(-)_E$: Sp \rightarrow Sp (*E*-localization) which lands in *E*-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

$$_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}.$$

Localization of spectra

Aras Ergus

And acyclizations Motivation Formal properties Existence Construction

Localization w.r.t. Moore spectra

More cool results

Localization of spectra

Aras Ergus

and acyclizations Motivation Formal properties Existence Construction

Theorem (Theorem 1.1)

There are functors

- $_{E}(-)$: Sp \rightarrow Sp (*E*-acyclization) which lands in *E*-acyclic spectra,
- $(-)_E : Sp \rightarrow Sp$ (*E*-localization) which lands in *E*-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

$$_EX \xrightarrow{\theta_X} X \xrightarrow{\eta_X} X_E.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (Theorem 1.1)

There are functors

- $_{E}(-)$: Sp \rightarrow Sp (*E*-acyclization) which lands in *E*-acyclic spectra,
- $(-)_E : Sp \rightarrow Sp$ (*E*-localization) which lands in *E*-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

$$_EX \xrightarrow{\theta_X} X \xrightarrow{\eta_X} X_E.$$

Localization of spectra

Aras Ergus

acyclizations Motivation Formal properties Existence Construction

Localization w.r.t. Moore spectra

More cool results

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (Theorem 1.1)

There are functors

- $_{E}(-)$: Sp \rightarrow Sp (*E*-acyclization) which lands in *E*-acyclic spectra,
- $(-)_E : Sp \rightarrow Sp$ (*E*-localization) which lands in *E*-local spectra,

such that for each spectrum X there exists a natural homotopy (co)fiber sequence

$$_E X \xrightarrow{\theta_X} X \xrightarrow{\eta_X} X_E.$$

Localization of spectra

Aras Ergus

acyclizations Motivation Formal properties Existence Construction

Localization w.r.t. Moore spectra

More cool results

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lat

Localization: w.r.t. Moore spectra

More cool results

$\eta_E \colon X \to X_E$ is an *E*-equivalence.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is an *E*-equivalence.

Proof.

Smashing the localization sequence with *E* yields a homotopy (co)fiber sequence

$$0 \simeq E \wedge {}_{E}X \xrightarrow{E \wedge \theta_{X}} E \wedge X \xrightarrow{E \wedge \eta_{X}} E \wedge X_{E}$$

so $E_*\eta_X=\pi_*(E\wedge\eta_X)$ is an equivalence

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield la

Localization: w.r.t. Moore spectra

More cool results

$\eta_E \colon X \to X_E$ is an *E*-equivalence.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is an *E*-equivalence.

Proof.

Smashing the localization sequence with E yields a homotopy (co)fiber sequence

$$0 \simeq E \wedge {}_{E}X \xrightarrow{E \wedge \theta_{X}} E \wedge X \xrightarrow{E \wedge \eta_{X}} E \wedge X_{E}$$

so $E_*\eta_X = \pi_*(E \wedge \eta_X)$ is an equivalence

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield la

Localization: w.r.t. Moore spectra

More cool results

$\eta_E \colon X \to X_E$ is an *E*-equivalence.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is an *E*-equivalence.

Proof.

Smashing the localization sequence with E yields a homotopy (co)fiber sequence

$$0 \simeq E \wedge {}_{E}X \xrightarrow{E \wedge \theta_{X}} E \wedge X \xrightarrow{E \wedge \eta_{X}} E \wedge X_{E}$$

so $E_*\eta_X = \pi_*(E \wedge \eta_X)$ is an equivalence.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Idempotency of the localization functor

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

The functor $(-)_E \colon Sp \to Sp$ is idempotent (up to homotopy).

Proof.

 $\eta_{X_E} \colon X_E \to (X_E)_E$ is an *E*-equivalence between *E*-local spectra. So it's an equivalence.

・ロット (四)・ (目)・ (日)・ (日)

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Reutfield lattice

Localization: w.r.t. Moore spectra

More cool results

Idempotency of the localization functor

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

The functor $(-)_E \colon Sp \to Sp$ is idempotent (up to homotopy).

Proof.

 $\eta_{X_E} \colon X_E \to (X_E)_E$ is an *E*-equivalence between *E*-local spectra. So it's an equivalence.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

Idempotency of the localization functor

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

The functor $(-)_E \colon Sp \to Sp$ is idempotent (up to homotopy).

Proof.

 $\eta_{X_E} \colon X_E \to (X_E)_E$ is an *E*-equivalence between *E*-local spectra. So it's an equivalence.

・ロット (四)・ (目)・ (日)・ (日)

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

$(-)_E \colon \mathsf{Sp} \to \mathsf{Sp}_E$ is left adjoint to $\mathsf{Sp}_E \hookrightarrow \mathsf{Sp}$.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is (up to homotopy) initial among maps from X to an E-local spectrum.

Proof.

If Y is E-local, then $\eta^*_X \colon [X,Y] \cong [X_E,Y]$ since η_E is an E-equivalence.

Corollary

E-localization is left adjoint to the inclusion $Sp_E \hookrightarrow Sp$ *of E-local spectra.*

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

$(-)_E \colon \mathsf{Sp} \to \mathsf{Sp}_E$ is left adjoint to $\mathsf{Sp}_E \hookrightarrow \mathsf{Sp}$.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is (up to homotopy) initial among maps from X to an E-local spectrum.

Proof.

If Y is E-local, then $\eta_X^* \colon [X, Y] \cong [X_E, Y]$ since η_E is an E-equivalence.

Corollary

E-localization is left adjoint to the inclusion $Sp_E \hookrightarrow Sp$ *of E-local spectra.*

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

$(-)_E \colon \mathsf{Sp} \to \mathsf{Sp}_E$ is left adjoint to $\mathsf{Sp}_E \hookrightarrow \mathsf{Sp}$.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\eta_X \colon X \to X_E$ is (up to homotopy) initial among maps from X to an E-local spectrum.

Proof.

If Y is E-local, then $\eta_X^* \colon [X, Y] \cong [X_E, Y]$ since η_E is an E-equivalence.

Corollary

E-localization is left adjoint to the inclusion $Sp_E \hookrightarrow Sp$ of *E*-local spectra.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localization: w.r.t. Moore spectra

More cool results

$_{E}(-): Sp \rightarrow _{E}Sp$ is right adjoint to $_{E}Sp \hookrightarrow Sp$.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\theta_X : {}_E X \to X$ is (up to homotopy) terminal among maps from an E-acyclic spectrum to X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Corollary

E-acyclization is right adjoint to the inclusion $Sp_E \hookrightarrow Sp$ of *E*-acyclic spectra.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Reutfield lattice

Localization: w.r.t. Moore spectra

More cool results

$_{E}(-): Sp \rightarrow _{E}Sp$ is right adjoint to $_{E}Sp \hookrightarrow Sp$.

Have: hocofiber sequence ${}_{E}X \xrightarrow{\theta_{X}} X \xrightarrow{\eta_{X}} X_{E}$ s.t. ${}_{E}X$ is E-acyclic and X_{E} is E-local.

Corollary

 $\theta_X : {}_E X \to X$ is (up to homotopy) terminal among maps from an E-acyclic spectrum to X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Corollary

E-acyclization is right adjoint to the inclusion $Sp_E \hookrightarrow Sp$ of *E*-acyclic spectra.

Aras Ergus

And acyclizations Motivation Formal properties Existence Construction

Localization w.r.t. Moore spectra

More cool results

Exactness of acyclization and localization functors

Corollary

E-acyclization and E-localization are exact functors.

◆□ > ◆□ > ◆臣 > ◆臣 > ○ 臣 ○ のへで

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations

Motivation Formal properties Existence Construction

The Bousfield latti

2 Localizations w.r.t. Moore spectra

3 More cool results

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - の々ぐ

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

How to construct localizations?

Recipe for constructing X_E .

- Construct a spectrum aE such that [A, Y]_• ≈ 0 for all E-acyclic A iff [aE, Y]_• ≈ 0.
- Will all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra $(X_n)_{n \in \mathbb{N}}$ s.t. every level X_n is a CW-complex and the structure maps $\Sigma X_n \to \Sigma X_{n+1}$ are inclusions of subcomplexes).

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

How to construct localizations?

Recipe for constructing X_E .

- Construct a spectrum aE such that [A, Y]_• ≅ 0 for all E-acyclic A iff [aE, Y]_• ≅ 0.
- Will all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra $(X_n)_{n\in\mathbb{N}}$ s.t. every level X_n is a CW-complex and the structure maps $\Sigma X_n \to \Sigma X_{n+1}$ are inclusions of subcomplexes).

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattic

Localization: w.r.t. Moore spectra

More cool results

How to construct localizations?

Recipe for constructing X_E .

- Construct a spectrum aE such that [A, Y]_• ≅ 0 for all E-acyclic A iff [aE, Y]_• ≅ 0.
- **2** "Kill" all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra $(X_n)_{n\in\mathbb{N}}$ s.t. every level X_n is a CW-complex and the structure maps $\Sigma X_n \to \Sigma X_{n+1}$ are inclusions of subcomplexes).

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattic

Localization: w.r.t. Moore spectra

More cool results

How to construct localizations?

Recipe for constructing X_E .

- Construct a spectrum aE such that [A, Y]_• ≈ 0 for all E-acyclic A iff [aE, Y]_• ≈ 0.
- **2** "Kill" all the maps from aE to X.

We'll sketch these constructions for CW-spectra (i.e. sequential spectra $(X_n)_{n \in \mathbb{N}}$ s.t. every level X_n is a CW-complex and the structure maps $\Sigma X_n \to \Sigma X_{n+1}$ are inclusions of subcomplexes).

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

"The" acyclic spectrum

Fix an infinite cardinal σ that is at least equal to $|\bigoplus_{n\in\mathbb{Z}} \pi_n E|$.

Definition

Let $(K_i)_{i \in I}$ a system of representatives for the equivalence classes of *E*-acyclic spectra with at most σ cells.

 $aE := \bigvee_{i \in I} K_i.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Definition

Let $(K_i)_{i \in I}$ a system of representatives for the equivalence classes of *E*-acyclic spectra with at most σ cells.

Set

$$aE := \bigvee_{i \in I} K_i.$$

"The" acyclic spectrum

Fix an infinite cardinal σ that is at least equal to $|\bigoplus_{n\in\mathbb{Z}} \pi_n E|$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

"The" acyclic spectrum

Fix an infinite cardinal σ that is at least equal to $|\bigoplus_{n\in\mathbb{Z}} \pi_n E|$.

Definition

Let $(K_i)_{i \in I}$ a system of representatives for the equivalence classes of *E*-acyclic spectra with at most σ cells.

Set

$$aE:=\bigvee_{i\in I}K_i.$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield latt

Localizations w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for every E-acyclic spectrum A.

o do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

Localization: w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** *E*-acyclic spectrum *A*.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$$

by *E*-acyclic CW-subspectra s.t.

(1) $A_{\gamma+1} = A_{\gamma} \cup W_{\gamma}$ for a subspectrum $W_{\gamma} \subset A$ s.t.

• $W_{\gamma} \notin A_{\gamma}$,

- W_{γ} has at most σ cells,
- $E_*(A_{\gamma+1}/A_{\gamma}) \cong E_*(W_{\gamma}/(W_{\gamma} \cap A_{\gamma})) \cong 0.$

 $A_{\lambda} = \bigcup_{i < \lambda} A_i \text{ for limit ordinals } \lambda.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield latt

Localizations w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_{lpha} = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations

w.r.t. Mod spectra

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_{lpha} = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations

spectra More cool

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_{lpha} = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** E-acyclic spectrum A.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_{lpha} = A$$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore

More cool results

aE "generates" all E-acyclic spectra (I)

Let Y be a spectrum s.t. $[aE, Y]_{\bullet} \cong 0$. We want to show that $[A, Y]_{\bullet} \cong 0$ for **every** *E*-acyclic spectrum *A*.

To do that, we would like to construct a (transfinite) filtration

$$0 = A_0 \subset A_1 \subset \ldots \subset A_{lpha} = A$$

by *E*-acyclic CW-subspectra s.t. 1 $A_{\gamma+1} = A_{\gamma} \cup W_{\gamma}$ for a subspectrum $W_{\gamma} \subset A$ s.t. • $W_{\gamma} \notin A_{\gamma}$, • W_{γ} has at most σ cells, • $E_*(A_{\gamma+1}/A_{\gamma}) \cong E_*(W_{\gamma}/(W_{\gamma} \cap A_{\gamma})) \cong 0$. 2 $A_{\lambda} = \bigcup_{i < \lambda} A_i$ for limit ordinals λ .

Aras Ergus

and acyclizations Motivation Formal properties

Existence

Construction The Bousfield latti

Localization: w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (II)

For a moment, assume that we do have filtration $0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$ by *E*-acyclic CW-subspectra s.t.

1
$$A_{\gamma+1} = A_{\gamma} \cup W_{\gamma}$$
 for a subspectrum $W_{\gamma} \subset A$ s.t.

•
$$W_\gamma \oplus A_\gamma$$
,

• W_γ has at most σ cells,

•
$$E_*(A_{\gamma+1}/A_{\gamma}) \cong E_*(W_{\gamma}/(W_{\gamma} \cap A_{\gamma})) \cong 0.$$

2 $A_{\lambda} = \bigcup_{i < \lambda} A_i$ for limit ordinals λ .

Note that the successor step guarantees that the subquotients $A_{\gamma+1}/A_{\gamma}$ are *E*-acyclic spectra with at most σ cells, so they are all "summands" of $aE = \bigvee_i K_i$. Thus, by (transfinite) induction along this filtration, we can show that $[A, Y]_{\bullet} \cong 0$ if $[aE, Y]_{\bullet} \cong 0$.

Aras Ergus

and acyclizations Motivation Formal properties

Construction

The Bousfield lattic

Localization w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (II)

For a moment, assume that we do have filtration $0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$ by *E*-acyclic CW-subspectra s.t.

$$1 A_{\gamma+1} = A_{\gamma} \cup W_{\gamma} \text{ for a subspectrum } W_{\gamma} \subset A \text{ s.t.}$$

•
$$W_\gamma \oplus A_\gamma$$
,

• W_{γ} has at most σ cells,

•
$$E_*(A_{\gamma+1}/A_{\gamma}) \cong E_*(W_{\gamma}/(W_{\gamma} \cap A_{\gamma})) \cong 0.$$

2 $A_{\lambda} = \bigcup_{i < \lambda} A_i$ for limit ordinals λ .

Note that the successor step guarantees that the subquotients $A_{\gamma+1}/A_{\gamma}$ are *E*-acyclic spectra with at most σ cells, so they are all "summands" of $aE = \bigvee_i K_i$. Thus, by (transfinite) induction along this filtration, we can show that $[A, Y]_{\bullet} \cong 0$ if $[aE, Y]_{\bullet} \cong 0$.

Aras Ergus

and acyclizations Motivation Formal properties

Construction

The Bousfield lattic

Localization w.r.t. Moore spectra

More cool results

aE "generates" all E-acyclic spectra (II)

For a moment, assume that we do have filtration $0 = A_0 \subset A_1 \subset \ldots \subset A_\alpha = A$ by *E*-acyclic CW-subspectra s.t.

$$1 A_{\gamma+1} = A_{\gamma} \cup W_{\gamma} \text{ for a subspectrum } W_{\gamma} \subset A \text{ s.t.}$$

•
$$W_\gamma \oplus A_\gamma$$
,

• W_{γ} has at most σ cells,

•
$$E_*(A_{\gamma+1}/A_{\gamma}) \cong E_*(W_{\gamma}/(W_{\gamma} \cap A_{\gamma})) \cong 0.$$

2 $A_{\lambda} = \bigcup_{i < \lambda} A_i$ for limit ordinals λ .

Note that the successor step guarantees that the subquotients $A_{\gamma+1}/A_{\gamma}$ are *E*-acyclic spectra with at most σ cells, so they are all "summands" of $aE = \bigvee_i K_i$. Thus, by (transfinite) induction along this filtration, we can show that $[A, Y]_{\bullet} \cong 0$ if $[aE, Y]_{\bullet} \cong 0$.

Aras Ergus

How to do the successor step?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

and acyclizations Motivation Formal properties Existence

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Lemma Let A be a CW-spectrum.

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

L

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Lemma

Let A be a CW-spectrum.

Let $B \subset A$ a proper closed subspectrum with $E_*(A/B) \cong 0$.

et e be a cell of A that is not in B.

Then there exists a CW-subspectrum $W \subset A$ such that:

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

Lemma

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Let A be a CW-spectrum.

Let $B \subset A$ a proper closed subspectrum with $E_*(A/B) \cong 0$. Let e be a cell of A that is not in B.

Then there exists a CW-subspectrum $W \subset A$ such that:

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

Lemma

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Let A be a CW-spectrum.

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

Lemma

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Let A be a CW-spectrum.

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

Lemma

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Let A be a CW-spectrum.

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

How to do the successor step?

Lemma

Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Let A be a CW-spectrum.

- W contains e.
- W has at most σ cells.
- $E_*(W/(W \cap B)) \cong 0.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n\in\mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

• $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

Aras Ergus

Localizations and acyclizations Motivation Formal properties

Existence

Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n\in\mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

• $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

Aras Ergus

Localizations and acyclizations Motivation Formal properties

Existence

Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

• $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

Aras Ergus

Localizations and acyclizations Motivation Formal properties

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,
- $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

Aras Ergus

Localizations and acyclizations Motivation Formal properties

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,
- $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

and set $W := \bigcup_n W_n$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,
- $E_*(W_n/(W_n \cap B)) \to E_*(W_{n+1}/(W_{n+1} \cap B))$ is zero for all n,

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

•
$$E_*(W_n/(W_n \cap B)) \rightarrow E_*(W_{n+1}/(W_{n+1} \cap B))$$
 is zero for all n ,

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

•
$$E_*(W_n/(W_n \cap B)) \rightarrow E_*(W_{n+1}/(W_{n+1} \cap B))$$
 is zero for all n ,

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

Construction

The Bousfield lattic

Localization w.r.t. Moore spectra

More cool results

Proof of the lemma needed for the successor step

Proof.

We will construct a sequence $(W_n)_{n \in \mathbb{N}}$ of CW-subspectra such that

- each W_n contains e,
- each W_n has at most σ cells,

•
$$E_*(W_n/(W_n \cap B)) \rightarrow E_*(W_{n+1}/(W_{n+1} \cap B))$$
 is zero for all n ,

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Recap of the construction of X_E

We have constructed a spectrum aE such that $[aE, Y]_{\bullet} \cong 0$ iff $[A, Y]_{\bullet} \cong 0$ for every *E*-acyclic spectrum *A*.

Now we want to construct the *E*-localization X_E of *X* by "coning off" all maps from *aE* to *X*.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Recap of the construction of X_E

We have constructed a spectrum aE such that $[aE, Y]_{\bullet} \cong 0$ iff $[A, Y]_{\bullet} \cong 0$ for every *E*-acyclic spectrum *A*.

Now we want to construct the *E*-localization X_E of *X* by "coning off" all maps from *aE* to *X*.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows: • Let $X_0 := X$.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}$$

The small object argument

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows: Let X₀ := X.

The small object argument

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in [aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \operatorname{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Pick a cardinal κ larger than the number of cells in *aE*. Set $X_E := X_{\kappa}$.

This guarantees that every map $\Sigma' a E \to X_E$ factors through X_i for some $i < \kappa$, so is trivial because it gets coned off at the next stage.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Pick a cardinal κ larger than the number of cells in aE. Set $X_E := X_{\kappa}$.

This guarantees that every map $\Sigma' a E \to X_E$ factors through X_i for some $i < \kappa$, so is trivial because it gets coned off at the next stage.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

The small object argument

Given a (CW-)spectrum X, construct X_E by (transfinite) induction as follows:
Let X₀ := X.

• Given X_{α} , define $X_{\alpha+1}$ to be the (homotopy) cofiber of

$$\bigvee_{n\in\mathbb{Z}}\bigvee_{[f]\in[aE,X_{\alpha}]_{n}}S^{i}\xrightarrow{\bigvee_{n}\bigvee_{[f]}f}X_{\alpha}.$$

• At limit ordinals λ set $X_{\lambda} := \text{hocolim}_{i < \lambda} X_i$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations

Motivation Formal properties Existence Construction

The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○ ○○

Let F be another spectrum.

Definition

Localization of spectra

Aras Ergus

The Bousfield lattice

E and F are called **Bousfield equivalent** if one of the following equivalent conditions holds:

() A spectrum is E-acyclic iff it is F-acyclic.

(i) A map between spectra is an E_* -equivalence iff it is an F_* -equivalence

The equivalence class of *E* w.r.t. this relation will be called the **Bousfield class of** *E* and denoted by $\langle E \rangle$.

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 三臣 - のへ⊙

Let F be another spectrum.

Definition

Localization of spectra

Aras Ergus

The Bousfield lattice

E and F are called **Bousfield equivalent** if one of the following equivalent conditions holds:

A spectrum is E-acyclic iff it is F-acyclic.

(i) A map between spectra is an E_* -equivalence iff it is an F_* -equivalence

The equivalence class of *E* w.r.t. this relation will be called the **Bousfield class of** *E* and denoted by $\langle E \rangle$.

Let F be another spectrum.

Definition

Localization of spectra

Aras Ergus

The Bousfield lattice

E and F are called **Bousfield equivalent** if one of the following equivalent conditions holds:

() A spectrum is *E*-acyclic iff it is *F*-acyclic.

(ii) A map between spectra is an E_* -equivalence iff it is an F_* -equivalence

The equivalence class of *E* w.r.t. this relation will be called the **Bousfield class of** *E* and denoted by $\langle E \rangle$.

Let F be another spectrum.

Definition

Localization of spectra

Aras Ergus

The Bousfield lattice

E and F are called **Bousfield equivalent** if one of the following equivalent conditions holds:

- 1 A spectrum is *E*-acyclic iff it is *F*-acyclic.
- (f) A map between spectra is an E_* -equivalence iff it is an F_* -equivalence.

The equivalence class of *E* w.r.t. this relation will be called the **Bousfield class of** *E* and denoted by $\langle E \rangle$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ▶ ▲□

Let F be another spectrum.

Definition

Localization of spectra

Aras Ergus

The Bousfield lattice

E and F are called **Bousfield equivalent** if one of the following equivalent conditions holds:

() A spectrum is *E*-acyclic iff it is *F*-acyclic.

(i) A map between spectra is an E_* -equivalence iff it is an F_* -equivalence.

The equivalence class of *E* w.r.t. this relation will be called the **Bousfield class of** *E* and denoted by $\langle E \rangle$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattice

Localization w.r.t. Moore spectra

More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0 \rangle$ is the minimal element and $\langle S \rangle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Aras Ergus

- Localizations and acyclizations Motivation Formal properties Existence
- The Bousfield lattice
- Localization w.r.t. Moore spectra
- More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0 \rangle$ is the minimal element and $\langle S \rangle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Aras Ergus

- Localizations and acyclizations Motivation Formal properties Existence Construction
- The Bousfield lattice
- Localization w.r.t. Moore spectra
- More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0
angle$ is the minimal element and $\langle \mathbb{S}
angle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0 \rangle$ is the minimal element and $\langle \mathbb{S} \rangle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

The Bousfield lattice

Localization: w.r.t. Moore spectra

More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0 \rangle$ is the minimal element and $\langle \mathbb{S} \rangle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Benefield Intric

Localizations w.r.t. Moore

More cool results

The set of Bousfield classes as a lattice

Fact

The set (!) of Bousfield classes of spectra is a lattice with

- join induced by wedge of spectra,
- meet induced by smash product of spectra.

In particular, $\langle 0 \rangle$ is the minimal element and $\langle S \rangle$ is the maximal element.

Definition

We define a partial order on the set of Bousfield clasess by declaring $\langle E \rangle \leq \langle F \rangle$ if every *F*-acyclic spectrum is *E*-acyclic.

Remark

Outline

Localization of spectra

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

1 Localizations and acyclizations

Motivation Formal properties Existence Construction The Bousfield lattice

3 More cool results

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- **()** G_1 and G_2 have the same type of acyclicity.
- $(\mathbf{S} G_1 \rangle = \langle \mathbf{S} G_2 \rangle.$
- \bigcirc $\mathbb{S}G_1$ and $\mathbb{S}G_2$ yield equivalent localization functors on Sp.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

• G_1 is a torsion group iff G_2 is, and

• for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- \bigcirc G_1 and G_2 have the same type of acyclicity.
- $(\mathbf{S} G_1 \rangle = \langle \mathbf{S} G_2 \rangle.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- \bigcirc G_1 and G_2 have the same type of acyclicity.
- $(\mathbb{S} G_1 \rangle = \langle \mathbb{S} G_2 \rangle.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

() G_1 and G_2 have the same type of acyclicity.

 $(\mathbb{S} G_1 \rangle = \langle \mathbb{S} G_2 \rangle.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- **()** G_1 and G_2 have the same type of acyclicity.
- $(\mathbf{S} G_1 \rangle = \langle \mathbf{S} G_2 \rangle.$
- m $\mathbb{S}G_1$ and $\mathbb{S}G_2$ yield equivalent localization functors on Sp.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- \bigcirc G_1 and G_2 have the same type of acyclicity.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Acyclicity types of abelian groups

Definition

Two abelian groups G_1 and G_2 have the same type of acyclicity if

- G_1 is a torsion group iff G_2 is, and
- for each prime p, G_1 is uniquely p-divisible iff G_2 is.

Fact (Proposition 2.3)

For abelian groups G_1 and G_2 , the following are equivalent:

- \bigcirc G_1 and G_2 have the same type of acyclicity.
- (i) $\langle \mathbb{S}G_1 \rangle = \langle \mathbb{S}G_2 \rangle.$
- \bigcirc $\mathbb{S}G_1$ and $\mathbb{S}G_2$ yield equivalent localization functors on Sp.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

An explicit description of acyclicity types

Remark

Every acyclicity class is represented by one of the following:

- $\prod_{p \in J} \mathbb{Z}/p$ for a set J of primes,
- $\mathbb{Z}_{(J)}$ for a set J of primes.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

An explicit description of acyclicity types

Remark

Every acyclicity class is represented by one of the following:

- $\prod_{p \in J} \mathbb{Z}/p$ for a set J of primes,
- $\mathbb{Z}_{(J)}$ for a set J of primes.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

An explicit description of acyclicity types

Remark

Every acyclicity class is represented by one of the following:

- $\prod_{p \in J} \mathbb{Z}/p$ for a set J of primes,
- $\mathbb{Z}_{(J)}$ for a set J of primes.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (I)

Definition

The **complement** of an acyclicity type (or by abuse of terminology, an abelian group) is defined as follows:

- If $\prod_{p \in J} \mathbb{Z}/p$ is in the class for a set J of primes, then the complement contains $\mathbb{Z}_{(J)}$.
- If $\mathbb{Z}_{(J)}$ is in the class for a set J of primes, then the complement contains $\prod_{p \in J} \mathbb{Z}/p$.

Example

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (I)

Definition

The **complement** of an acyclicity type (or by abuse of terminology, an abelian group) is defined as follows:

- If $\prod_{p \in J} \mathbb{Z}/p$ is in the class for a set J of primes, then the complement contains $\mathbb{Z}_{(J)}$.
- If $\mathbb{Z}_{(J)}$ is in the class for a set J of primes, then the complement contains $\prod_{p \in J} \mathbb{Z}/p$.

Example

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (I)

Definition

The **complement** of an acyclicity type (or by abuse of terminology, an abelian group) is defined as follows:

- If $\prod_{p \in J} \mathbb{Z}/p$ is in the class for a set J of primes, then the complement contains $\mathbb{Z}_{(J)}$.
- If $\mathbb{Z}_{(J)}$ is in the class for a set J of primes, then the complement contains $\prod_{p \in J} \mathbb{Z}/p$.

Example

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (I)

Definition

The **complement** of an acyclicity type (or by abuse of terminology, an abelian group) is defined as follows:

- If $\prod_{p \in J} \mathbb{Z}/p$ is in the class for a set J of primes, then the complement contains $\mathbb{Z}_{(J)}$.
- If $\mathbb{Z}_{(J)}$ is in the class for a set J of primes, then the complement contains $\prod_{p \in J} \mathbb{Z}/p$.

Example

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (II)

Remark

Let ${\cal G}$ be an abelian group and ${\cal G}'$ an abelian group in the complement of its acyclicity type.

nen:

- $G \oplus G'$ and \mathbb{Z} have the same type of acyclicity.
- $\langle \mathbb{S}G \vee \mathbb{S}G' \rangle = \langle \mathbb{S} \rangle.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (II)

Remark

Let G be an abelian group and G' an abelian group in the complement of its acyclicity type. Then:

- $G \oplus G'$ and $\mathbb Z$ have the same type of acyclicity.
- $\langle \mathbb{S}G \vee \mathbb{S}G' \rangle = \langle \mathbb{S} \rangle.$

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattice

Localizations w.r.t. Moore spectra

More cool results

Complements of acyclicity types (II)

Remark

Let G be an abelian group and G' an abelian group in the complement of its acyclicity type. Then:

• $G \oplus G'$ and $\mathbb Z$ have the same type of acyclicity.

• $\langle \mathbb{S}G \vee \mathbb{S}G' \rangle = \langle \mathbb{S} \rangle.$

Outline

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localization of spectra

Aras Ergus

Localizations w.r.t. Moore spectra

More cool results

Localizations and acyclizations Motivation

Formal properties Existence

Construction

The Bousfield lattice

2 Localizations w.r.t. Moore spectra

3 More cool results

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = ■ - のへで

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

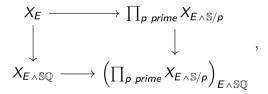
Localizations w.r.t. Moore spectra

More cool results

The (generalized) arithmetic square

Theorem (Proposition 2.9)

Each spectrum X sits in a homotopy pullback square



where all the maps are induced by corresponding localizations.

Aras Ergus

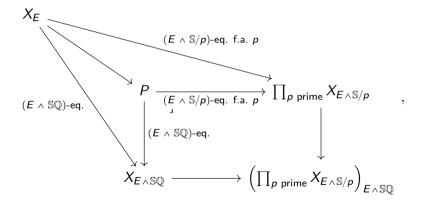
Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localization: w.r.t. Moore spectra

More cool results

Proof of the arithmetic square theorem

Proof sketch.



The homotopy pullback P is E-local as a limit of E-local spectra, so it's enough to show that $X_E \to P$ is an E-equivalence.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Localizations of connective spectra w.r.t. connective spectra

Theorem (Theorem 3.1)

Assume that E is connective.

Let X be a connective spectrum. Then $X_E \simeq X_{\mathbb{S}(\bigoplus_{n \in \mathbb{Z}} \pi_n E)}$.

Corollary

Let G be an abelian group, X a connective spectrum. Then $X_{HG} \simeq X_{\mathbb{S}G}$.

・ロト・日本・山田・山田・山口・

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Localizations of connective spectra w.r.t. connective spectra

Theorem (Theorem 3.1)

Assume that E is connective. Let X be a connective spectrum. Then $X_E \simeq X_{\mathbb{S}(\bigoplus_{m \in \mathcal{I}} \pi_m E)}$.

Corollary

Let G be an abelian group, X a connective spectrum. Then $X_{HG} \simeq X_{\mathbb{S}G}$.

・ロト・西ト・山田・山田・

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Localizations of connective spectra w.r.t. connective spectra

Theorem (Theorem 3.1)

Assume that E is connective. Let X be a connective spectrum. Then $X_E \simeq X_{\mathbb{S}(\bigoplus_{n \in \mathbb{Z}} \pi_n E)}$.

Corollary

Let G be an abelian group, X a connective spectrum. Then $X_{HG} \simeq X_{\mathbb{S}G}$.

・ロト・西ト・山田・山田・

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Localizations of connective spectra w.r.t. connective spectra

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

Theorem (Theorem 3.1)

Assume that E is connective. Let X be a connective spectrum. Then $X_E \simeq X_{\mathbb{S}(\bigoplus_{n \in \mathbb{Z}} \pi_n E)}$.

Corollary

Let G be an abelian group, X a connective spectrum. Then $X_{HG} \simeq X_{SG}$.

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield latti

Localizations w.r.t. Moore spectra

More cool results

Localizations of connective spectra w.r.t. connective spectra

Theorem (Theorem 3.1)

Assume that E is connective. Let X be a connective spectrum. Then $X_E \simeq X_{\mathbb{S}(\bigoplus_{n \in \mathbb{Z}} \pi_n E)}$.

Corollary

Let G be an abelian group, X a connective spectrum. Then $X_{HG} \simeq X_{\mathbb{S}G}$.

・ロト・西ト・山田・山田・

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Theorem (Proposition 4.2)

Let p be a prime number.

Let $A_p \colon \Sigma^{2(p-1)} \mathbb{S}/p \to \mathbb{S}/p$ for p odd resp. $A_p \colon \Sigma^8 \mathbb{S}/2 \to \mathbb{S}/2$ for p = 2 be the Adams map. Then the natural map

$$\mathbb{S}/p \to \operatorname{hocolim}(\mathbb{S}/p \xrightarrow{\Sigma^{-\deg A_p} A_p} \Sigma^{-\deg A_p} \mathbb{S}/p \xrightarrow{\Sigma^{-2\deg A_p} A_p} \ldots)$$

is a KU-localization.

A "telescope theorem"

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Theorem (Proposition 4.2)

Let p be a prime number. Let $A_p: \Sigma^{2(p-1)} S/p \to S/p$ for p odd resp. $A_p: \Sigma^8 S/2 \to S/2$ for p = 2 be the Adams map.

Then the natural map

$$\mathbb{S}/p \to \operatorname{hocolim}(\mathbb{S}/p \xrightarrow{\Sigma^{-\deg A_p} A_p} \Sigma^{-\deg A_p} \mathbb{S}/p \xrightarrow{\Sigma^{-2\deg A_p} A_p} \ldots)$$

is a KU-localization.

・ロト・西ト・山田・山田・

A "telescope theorem"

Aras Ergus

Localizations and acyclizations Motivation Formal properties Existence Construction The Bousfield lattic

Localizations w.r.t. Moore spectra

More cool results

Theorem (Proposition 4.2)

Let p be a prime number. Let $A_p: \Sigma^{2(p-1)} S/p \to S/p$ for p odd resp. $A_p: \Sigma^8 S/2 \to S/2$ for p = 2 be the Adams map. Then the natural map

A "telescope theorem"

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の00

$$\mathbb{S}/p \to \operatorname{hocolim}(\mathbb{S}/p \xrightarrow{\Sigma^{-\deg A_p} A_p} \Sigma^{-\deg A_p} \mathbb{S}/p \xrightarrow{\Sigma^{-2\deg A_p} A_p} \ldots)$$

is a KU-localization.